feat(library/logic/axioms): break prop_complete into propext and em
The user may want to use propext without assuming em.
This commit is contained in:
parent
e35de54cee
commit
6e6cc749a8
4 changed files with 41 additions and 19 deletions
13
library/logic/axioms/em.lean
Normal file
13
library/logic/axioms/em.lean
Normal file
|
@ -0,0 +1,13 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: logic.axioms.funext
|
||||||
|
Author: Leonardo de Moura
|
||||||
|
|
||||||
|
Excluded middle
|
||||||
|
|
||||||
|
Remark: This axiom can be derived from propext funext and hilbert.
|
||||||
|
See examples/diaconescu
|
||||||
|
-/
|
||||||
|
axiom em (a : Prop) : a ∨ ¬a
|
10
library/logic/axioms/extensional.lean
Normal file
10
library/logic/axioms/extensional.lean
Normal file
|
@ -0,0 +1,10 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: logic.axioms.extensional
|
||||||
|
Author: Leonardo de Moura
|
||||||
|
|
||||||
|
Import extensionality axioms: funext and propext
|
||||||
|
-/
|
||||||
|
import logic.axioms.propext logic.axioms.funext
|
|
@ -6,9 +6,13 @@ Module: logic.axioms.classical
|
||||||
Author: Leonardo de Moura
|
Author: Leonardo de Moura
|
||||||
-/
|
-/
|
||||||
import logic.connectives logic.quantifiers logic.cast algebra.relation
|
import logic.connectives logic.quantifiers logic.cast algebra.relation
|
||||||
|
import logic.axioms.propext logic.axioms.em
|
||||||
open eq.ops
|
open eq.ops
|
||||||
|
|
||||||
axiom prop_complete (a : Prop) : a = true ∨ a = false
|
theorem prop_complete (a : Prop) : a = true ∨ a = false :=
|
||||||
|
or.elim (em a)
|
||||||
|
(λ t, or.inl (propext (iff.intro (λ h, trivial) (λ h, t))))
|
||||||
|
(λ f, or.inr (propext (iff.intro (λ h, absurd h f) (λ h, false.elim h))))
|
||||||
|
|
||||||
definition eq_true_or_eq_false := prop_complete
|
definition eq_true_or_eq_false := prop_complete
|
||||||
|
|
||||||
|
@ -20,12 +24,6 @@ or.elim (prop_complete a)
|
||||||
theorem cases_on (a : Prop) {P : Prop → Prop} (H1 : P true) (H2 : P false) : P a :=
|
theorem cases_on (a : Prop) {P : Prop → Prop} (H1 : P true) (H2 : P false) : P a :=
|
||||||
cases_true_false P H1 H2 a
|
cases_true_false P H1 H2 a
|
||||||
|
|
||||||
-- this supercedes the em in decidable
|
|
||||||
theorem em (a : Prop) : a ∨ ¬a :=
|
|
||||||
or.elim (prop_complete a)
|
|
||||||
(assume Ht : a = true, or.inl (of_eq_true Ht))
|
|
||||||
(assume Hf : a = false, or.inr (not_of_eq_false Hf))
|
|
||||||
|
|
||||||
-- this supercedes by_cases in decidable
|
-- this supercedes by_cases in decidable
|
||||||
definition by_cases {p q : Prop} (Hpq : p → q) (Hnpq : ¬p → q) : q :=
|
definition by_cases {p q : Prop} (Hpq : p → q) (Hnpq : ¬p → q) : q :=
|
||||||
or.elim (em p) (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
|
or.elim (em p) (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
|
||||||
|
@ -42,22 +40,13 @@ cases_true_false (λ x, x = false ∨ x = true)
|
||||||
(or.inl rfl)
|
(or.inl rfl)
|
||||||
a
|
a
|
||||||
|
|
||||||
theorem propext {a b : Prop} (Hab : a → b) (Hba : b → a) : a = b :=
|
|
||||||
or.elim (prop_complete a)
|
|
||||||
(assume Hat, or.elim (prop_complete b)
|
|
||||||
(assume Hbt, Hat ⬝ Hbt⁻¹)
|
|
||||||
(assume Hbf, false.elim (Hbf ▸ (Hab (of_eq_true Hat)))))
|
|
||||||
(assume Haf, or.elim (prop_complete b)
|
|
||||||
(assume Hbt, false.elim (Haf ▸ (Hba (of_eq_true Hbt))))
|
|
||||||
(assume Hbf, Haf ⬝ Hbf⁻¹))
|
|
||||||
|
|
||||||
theorem eq.of_iff {a b : Prop} (H : a ↔ b) : a = b :=
|
theorem eq.of_iff {a b : Prop} (H : a ↔ b) : a = b :=
|
||||||
iff.elim (assume H1 H2, propext H1 H2) H
|
iff.elim (assume H1 H2, propext (iff.intro H1 H2)) H
|
||||||
|
|
||||||
theorem iff_eq_eq {a b : Prop} : (a ↔ b) = (a = b) :=
|
theorem iff_eq_eq {a b : Prop} : (a ↔ b) = (a = b) :=
|
||||||
propext
|
propext (iff.intro
|
||||||
(assume H, eq.of_iff H)
|
(assume H, eq.of_iff H)
|
||||||
(assume H, iff.of_eq H)
|
(assume H, iff.of_eq H))
|
||||||
|
|
||||||
open relation
|
open relation
|
||||||
theorem iff_congruence [instance] (P : Prop → Prop) : is_congruence iff iff P :=
|
theorem iff_congruence [instance] (P : Prop → Prop) : is_congruence iff iff P :=
|
||||||
|
|
10
library/logic/axioms/propext.lean
Normal file
10
library/logic/axioms/propext.lean
Normal file
|
@ -0,0 +1,10 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: logic.axioms.funext
|
||||||
|
Author: Leonardo de Moura
|
||||||
|
|
||||||
|
Propositional extensionality.
|
||||||
|
-/
|
||||||
|
axiom propext {a b : Prop} : a ↔ b → a = b
|
Loading…
Reference in a new issue