feat(library/logic/axioms): break prop_complete into propext and em

The user may want to use propext without assuming em.
This commit is contained in:
Leonardo de Moura 2015-03-31 18:51:43 -07:00
parent e35de54cee
commit 6e6cc749a8
4 changed files with 41 additions and 19 deletions

View file

@ -0,0 +1,13 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: logic.axioms.funext
Author: Leonardo de Moura
Excluded middle
Remark: This axiom can be derived from propext funext and hilbert.
See examples/diaconescu
-/
axiom em (a : Prop) : a ¬a

View file

@ -0,0 +1,10 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: logic.axioms.extensional
Author: Leonardo de Moura
Import extensionality axioms: funext and propext
-/
import logic.axioms.propext logic.axioms.funext

View file

@ -6,9 +6,13 @@ Module: logic.axioms.classical
Author: Leonardo de Moura
-/
import logic.connectives logic.quantifiers logic.cast algebra.relation
import logic.axioms.propext logic.axioms.em
open eq.ops
axiom prop_complete (a : Prop) : a = true a = false
theorem prop_complete (a : Prop) : a = true a = false :=
or.elim (em a)
(λ t, or.inl (propext (iff.intro (λ h, trivial) (λ h, t))))
(λ f, or.inr (propext (iff.intro (λ h, absurd h f) (λ h, false.elim h))))
definition eq_true_or_eq_false := prop_complete
@ -20,12 +24,6 @@ or.elim (prop_complete a)
theorem cases_on (a : Prop) {P : Prop → Prop} (H1 : P true) (H2 : P false) : P a :=
cases_true_false P H1 H2 a
-- this supercedes the em in decidable
theorem em (a : Prop) : a ¬a :=
or.elim (prop_complete a)
(assume Ht : a = true, or.inl (of_eq_true Ht))
(assume Hf : a = false, or.inr (not_of_eq_false Hf))
-- this supercedes by_cases in decidable
definition by_cases {p q : Prop} (Hpq : p → q) (Hnpq : ¬p → q) : q :=
or.elim (em p) (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
@ -42,22 +40,13 @@ cases_true_false (λ x, x = false x = true)
(or.inl rfl)
a
theorem propext {a b : Prop} (Hab : a → b) (Hba : b → a) : a = b :=
or.elim (prop_complete a)
(assume Hat, or.elim (prop_complete b)
(assume Hbt, Hat ⬝ Hbt⁻¹)
(assume Hbf, false.elim (Hbf ▸ (Hab (of_eq_true Hat)))))
(assume Haf, or.elim (prop_complete b)
(assume Hbt, false.elim (Haf ▸ (Hba (of_eq_true Hbt))))
(assume Hbf, Haf ⬝ Hbf⁻¹))
theorem eq.of_iff {a b : Prop} (H : a ↔ b) : a = b :=
iff.elim (assume H1 H2, propext H1 H2) H
iff.elim (assume H1 H2, propext (iff.intro H1 H2)) H
theorem iff_eq_eq {a b : Prop} : (a ↔ b) = (a = b) :=
propext
propext (iff.intro
(assume H, eq.of_iff H)
(assume H, iff.of_eq H)
(assume H, iff.of_eq H))
open relation
theorem iff_congruence [instance] (P : Prop → Prop) : is_congruence iff iff P :=

View file

@ -0,0 +1,10 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: logic.axioms.funext
Author: Leonardo de Moura
Propositional extensionality.
-/
axiom propext {a b : Prop} : a ↔ b → a = b