feat(frontends/lean/coercion_elaborator): "coercion lifting" for backtracking case

closes #252
This commit is contained in:
Leonardo de Moura 2015-05-30 16:44:26 -07:00
parent ea9c810fca
commit 6f6848968d
7 changed files with 66 additions and 17 deletions

View file

@ -40,8 +40,9 @@ namespace category
definition is_equiv_iso_of_equiv (A B : Precategory_hset) : is_equiv (@iso_of_equiv A B) := definition is_equiv_iso_of_equiv (A B : Precategory_hset) : is_equiv (@iso_of_equiv A B) :=
adjointify _ (λf, equiv_of_iso f) adjointify _ (λf, equiv_of_iso f)
(λf, iso_eq idp) (λf, proof iso_eq idp qed)
(λf, equiv_eq idp) (λf, equiv_eq idp)
local attribute is_equiv_iso_of_equiv [instance] local attribute is_equiv_iso_of_equiv [instance]
open sigma.ops open sigma.ops

View file

@ -136,9 +136,9 @@ namespace eq
definition idp_rec_on [recursor] {P : Π⦃b₂ : B a⦄, b =[idpath a] b₂ → Type} definition idp_rec_on [recursor] {P : Π⦃b₂ : B a⦄, b =[idpath a] b₂ → Type}
{b₂ : B a} (r : b =[idpath a] b₂) (H : P idpo) : P r := {b₂ : B a} (r : b =[idpath a] b₂) (H : P idpo) : P r :=
have H2 : P (pathover_idp_of_eq (eq_of_pathover_idp r)), have H2 : P (pathover_idp_of_eq (eq_of_pathover_idp r)), from
from eq.rec_on (eq_of_pathover_idp r) H, eq.rec_on (eq_of_pathover_idp r) H,
left_inv !pathover_idp r ▸ H2 proof left_inv !pathover_idp r ▸ H2 qed
definition rec_on_right [recursor] {P : Π⦃b₂ : B a₂⦄, b =[p] b₂ → Type} definition rec_on_right [recursor] {P : Π⦃b₂ : B a₂⦄, b =[p] b₂ → Type}
{b₂ : B a₂} (r : b =[p] b₂) (H : P !pathover_tr) : P r := {b₂ : B a₂} (r : b =[p] b₂) (H : P !pathover_tr) : P r :=

View file

@ -7,6 +7,7 @@ Author: Leonardo de Moura
#include "kernel/type_checker.h" #include "kernel/type_checker.h"
#include "kernel/metavar.h" #include "kernel/metavar.h"
#include "kernel/constraint.h" #include "kernel/constraint.h"
#include "kernel/instantiate.h"
#include "kernel/abstract.h" #include "kernel/abstract.h"
#include "library/coercion.h" #include "library/coercion.h"
#include "library/unifier.h" #include "library/unifier.h"
@ -28,20 +29,22 @@ list<expr> get_coercions_from_to(type_checker & from_tc, type_checker & to_tc,
environment const & env = to_tc.env(); environment const & env = to_tc.env();
expr whnf_from_type = from_tc.whnf(from_type, new_cs); expr whnf_from_type = from_tc.whnf(from_type, new_cs);
expr whnf_to_type = to_tc.whnf(to_type, new_cs); expr whnf_to_type = to_tc.whnf(to_type, new_cs);
if (is_arrow(whnf_from_type)) { if (is_pi(whnf_from_type)) {
// Try to lift coercions. // Try to lift coercions.
// The idea is to convert a coercion from A to B, into a coercion from D->A to D->B // The idea is to convert a coercion from A to B, into a coercion from D->A to D->B
if (!is_arrow(whnf_to_type)) if (!is_pi(whnf_to_type))
return list<expr>(); // failed return list<expr>(); // failed
if (!from_tc.is_def_eq(binding_domain(whnf_from_type), binding_domain(whnf_to_type), justification(), new_cs)) if (!from_tc.is_def_eq(binding_domain(whnf_from_type), binding_domain(whnf_to_type), justification(), new_cs))
return list<expr>(); // failed, the domains must be definitionally equal return list<expr>(); // failed, the domains must be definitionally equal
list<expr> coe = get_coercions_from_to(from_tc, to_tc, binding_body(whnf_from_type), binding_body(whnf_to_type), new_cs); expr x = mk_local(from_tc.mk_fresh_name(), "x", binding_domain(whnf_from_type), binder_info());
expr A = instantiate(binding_body(whnf_from_type), x);
expr B = instantiate(binding_body(whnf_to_type), x);
list<expr> coe = get_coercions_from_to(from_tc, to_tc, A, B, new_cs);
if (coe) { if (coe) {
cs += new_cs; cs += new_cs;
// Remark: each coercion c in coe is a function from A to B // Remark: each coercion c in coe is a function from A to B
// We create a new list: (fun (f : D -> A) (x : D), c (f x)) // We create a new list: (fun (f : D -> A) (x : D), c (f x))
expr f = mk_local(from_tc.mk_fresh_name(), "f", whnf_from_type, binder_info()); expr f = mk_local(from_tc.mk_fresh_name(), "f", whnf_from_type, binder_info());
expr x = mk_local(from_tc.mk_fresh_name(), "x", binding_domain(whnf_from_type), binder_info());
expr fx = mk_app(f, x); expr fx = mk_app(f, x);
return map(coe, [&](expr const & c) { return Fun(f, Fun(x, mk_app(c, fx))); }); return map(coe, [&](expr const & c) { return Fun(f, Fun(x, mk_app(c, fx))); });
} else { } else {
@ -79,6 +82,14 @@ optional<constraints> coercion_elaborator::next() {
return optional<constraints>(r); return optional<constraints>(r);
} }
bool is_pi_meta(expr const & e) {
if (is_pi(e)) {
return is_pi_meta(binding_body(e));
} else {
return is_meta(e);
}
}
/** \brief Given a term <tt>a : a_type</tt>, and a metavariable \c m, creates a constraint /** \brief Given a term <tt>a : a_type</tt>, and a metavariable \c m, creates a constraint
that considers coercions from a_type to the type assigned to \c m. */ that considers coercions from a_type to the type assigned to \c m. */
constraint mk_coercion_cnstr(type_checker & from_tc, type_checker & to_tc, coercion_info_manager & infom, constraint mk_coercion_cnstr(type_checker & from_tc, type_checker & to_tc, coercion_info_manager & infom,
@ -107,10 +118,26 @@ constraint mk_coercion_cnstr(type_checker & from_tc, type_checker & to_tc, coerc
} }
constraint_seq cs; constraint_seq cs;
new_a_type = from_tc.whnf(new_a_type, cs); new_a_type = from_tc.whnf(new_a_type, cs);
if (is_meta(d_type)) { if (is_pi_meta(d_type)) {
// case-split // case-split
buffer<expr> locals;
expr it_from = new_a_type;
expr it_to = d_type;
while (is_pi(it_from) && is_pi(it_to)) {
expr dom_from = binding_domain(it_from);
expr dom_to = binding_domain(it_to);
if (!from_tc.is_def_eq(dom_from, dom_to, justification(), cs))
return lazy_list<constraints>();
expr local = mk_local(from_tc.mk_fresh_name(), binding_name(it_from), dom_from, binder_info());
locals.push_back(local);
it_from = instantiate(binding_body(it_from), local);
it_to = instantiate(binding_body(it_to), local);
}
buffer<std::tuple<coercion_class, expr, expr>> alts; buffer<std::tuple<coercion_class, expr, expr>> alts;
get_coercions_from(from_tc.env(), new_a_type, alts); get_coercions_from(from_tc.env(), it_from, alts);
expr fn_a;
if (!locals.empty())
fn_a = mk_local(from_tc.mk_fresh_name(), "f", new_a_type, binder_info());
buffer<constraints> choices; buffer<constraints> choices;
buffer<expr> coes; buffer<expr> coes;
// first alternative: no coercion // first alternative: no coercion
@ -121,6 +148,8 @@ constraint mk_coercion_cnstr(type_checker & from_tc, type_checker & to_tc, coerc
--i; --i;
auto const & t = alts[i]; auto const & t = alts[i];
expr coe = std::get<1>(t); expr coe = std::get<1>(t);
if (!locals.empty())
coe = Fun(fn_a, Fun(locals, mk_app(coe, mk_app(fn_a, locals))));
expr new_a = copy_tag(a, mk_app(coe, a)); expr new_a = copy_tag(a, mk_app(coe, a));
coes.push_back(coe); coes.push_back(coe);
constraint_seq csi = cs + mk_eq_cnstr(meta, new_a, new_a_type_jst); constraint_seq csi = cs + mk_eq_cnstr(meta, new_a, new_a_type_jst);

View file

@ -30,6 +30,9 @@ public:
optional<constraints> next(); optional<constraints> next();
}; };
/** \brief Return true iff \c e is of the form (Pi (...), ?M ...) */
bool is_pi_meta(expr const & e);
/** \brief Given a term <tt>a : a_type</tt>, and a metavariable \c m, creates a constraint /** \brief Given a term <tt>a : a_type</tt>, and a metavariable \c m, creates a constraint
that considers coercions from a_type to the type assigned to \c m. that considers coercions from a_type to the type assigned to \c m.

View file

@ -478,12 +478,13 @@ pair<expr, expr> elaborator::ensure_fun(expr f, constraint_seq & cs) {
return mk_pair(f, f_type); return mk_pair(f, f_type);
} }
bool elaborator::has_coercions_from(expr const & a_type) { bool elaborator::has_coercions_from(expr const & a_type, bool & lifted_coe) {
try { try {
expr a_cls = get_app_fn(m_coercion_from_tc->whnf(a_type).first); expr a_cls = get_app_fn(m_coercion_from_tc->whnf(a_type).first);
while (is_pi(a_cls)) { while (is_pi(a_cls)) {
expr local = mk_local(binding_name(a_cls), binding_domain(a_cls), binding_info(a_cls)); expr local = mk_local(binding_name(a_cls), binding_domain(a_cls), binding_info(a_cls));
a_cls = get_app_fn(m_coercion_from_tc->whnf(instantiate(binding_body(a_cls), local)).first); a_cls = get_app_fn(m_coercion_from_tc->whnf(instantiate(binding_body(a_cls), local)).first);
lifted_coe = true;
} }
return is_constant(a_cls) && ::lean::has_coercions_from(env(), const_name(a_cls)); return is_constant(a_cls) && ::lean::has_coercions_from(env(), const_name(a_cls));
} catch (exception&) { } catch (exception&) {
@ -548,11 +549,11 @@ pair<expr, constraint_seq> elaborator::mk_delayed_coercion(
return to_ecs(m, c); return to_ecs(m, c);
} }
/** \brief Given a term <tt>a : a_type</tt>, ensure it has type \c expected_type. Apply coercions if needed /** \brief Given a term <tt>a : a_type</tt>, ensure it has type \c expected_type. Apply coercions if needed */
*/
pair<expr, constraint_seq> elaborator::ensure_has_type( pair<expr, constraint_seq> elaborator::ensure_has_type(
expr const & a, expr const & a_type, expr const & expected_type, justification const & j) { expr const & a, expr const & a_type, expr const & expected_type, justification const & j) {
if (is_meta(expected_type) && has_coercions_from(a_type)) { bool lifted_coe = false;
if (has_coercions_from(a_type, lifted_coe) && ((!lifted_coe && is_meta(expected_type)) || (lifted_coe && is_pi_meta(expected_type)))) {
return mk_delayed_coercion(a, a_type, expected_type, j); return mk_delayed_coercion(a, a_type, expected_type, j);
} else if (!m_in_equation_lhs && is_meta(a_type) && has_coercions_to(expected_type)) { } else if (!m_in_equation_lhs && is_meta(a_type) && has_coercions_to(expected_type)) {
return mk_delayed_coercion(a, a_type, expected_type, j); return mk_delayed_coercion(a, a_type, expected_type, j);

View file

@ -118,7 +118,7 @@ class elaborator : public coercion_info_manager {
expr visit_calc_proof(expr const & e, optional<expr> const & t, constraint_seq & cs); expr visit_calc_proof(expr const & e, optional<expr> const & t, constraint_seq & cs);
expr add_implict_args(expr e, constraint_seq & cs); expr add_implict_args(expr e, constraint_seq & cs);
pair<expr, expr> ensure_fun(expr f, constraint_seq & cs); pair<expr, expr> ensure_fun(expr f, constraint_seq & cs);
bool has_coercions_from(expr const & a_type); bool has_coercions_from(expr const & a_type, bool & lifted_coe);
bool has_coercions_to(expr d_type); bool has_coercions_to(expr d_type);
expr apply_coercion(expr const & a, expr a_type, expr d_type); expr apply_coercion(expr const & a, expr a_type, expr d_type);
pair<expr, constraint_seq> mk_delayed_coercion(expr const & a, expr const & a_type, expr const & expected_type, pair<expr, constraint_seq> mk_delayed_coercion(expr const & a, expr const & a_type, expr const & expected_type,

15
tests/lean/run/252.lean Normal file
View file

@ -0,0 +1,15 @@
open nat
inductive tree (A : Type) :=
leaf : A → tree A,
node : tree A → tree A → tree A
check tree.node
definition size {A : Type} (t : tree A) :=
tree.rec (λ a, 1) (λ t₁ t₂ n₁ n₂, n₁ + n₂) t
check size
eval size (tree.node (tree.node (tree.leaf 0) (tree.leaf 1))
(tree.leaf 0))