diff --git a/library/data/finset/bigop.lean b/library/data/finset/bigop.lean index ac8f2a8eb..c03814e17 100644 --- a/library/data/finset/bigop.lean +++ b/library/data/finset/bigop.lean @@ -1,18 +1,16 @@ /- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. - -Module: data.finset Author: Leonardo de Moura -Big operator for finite sets +Big operator for finite sets. -/ import algebra.group data.finset.basic data.list.bigop open algebra finset function binary quot subtype namespace finset variables {A B : Type} -variable [g : comm_group B] +variable [g : comm_monoid B] include g definition bigop (s : finset A) (f : A → B) : B := diff --git a/library/data/finset/comb.lean b/library/data/finset/comb.lean index 75493175a..7801caba5 100644 --- a/library/data/finset/comb.lean +++ b/library/data/finset/comb.lean @@ -153,7 +153,7 @@ variables {A B : Type} definition product (s₁ : finset A) (s₂ : finset B) : finset (A × B) := quot.lift_on₂ s₁ s₂ (λ l₁ l₂, - to_finset_of_nodup (list.product (elt_of l₁) (elt_of l₂)) + to_finset_of_nodup (product (elt_of l₁) (elt_of l₂)) (nodup_product (has_property l₁) (has_property l₂))) (λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_product p₁ p₂)) diff --git a/library/data/list/bigop.lean b/library/data/list/bigop.lean index 89147bbb3..bfb5481fd 100644 --- a/library/data/list/bigop.lean +++ b/library/data/list/bigop.lean @@ -12,7 +12,7 @@ open algebra function binary quot namespace list variables {A B : Type} -variable [g : group B] +variable [g : monoid B] include g definition mulf (f : A → B) : B → A → B := @@ -58,7 +58,7 @@ end list namespace list open perm variables {A B : Type} -variable [g : comm_group B] +variable [g : comm_monoid B] include g theorem mulf_rcomm (f : A → B) : right_commutative (mulf f) := diff --git a/library/data/list/comb.lean b/library/data/list/comb.lean index 832ca04fd..322a3d63e 100644 --- a/library/data/list/comb.lean +++ b/library/data/list/comb.lean @@ -268,7 +268,7 @@ theorem zip_unzip : ∀ (l : list (A × B)), zip (pr₁ (unzip l)) (pr₂ (unzip definition flat (l : list (list A)) : list A := foldl append nil l -/- cross product -/ +/- product -/ section product definition product : list A → list B → list (A × B) diff --git a/library/data/list/set.lean b/library/data/list/set.lean index 05174917f..8d9211b7f 100644 --- a/library/data/list/set.lean +++ b/library/data/list/set.lean @@ -130,7 +130,7 @@ end erase section disjoint variable {A : Type} -definition disjoint (l₁ l₂ : list A) : Prop := ∀ a, (a ∈ l₁ → a ∈ l₂ → false) +definition disjoint (l₁ l₂ : list A) : Prop := ∀ ⦃a⦄, (a ∈ l₁ → a ∈ l₂ → false) lemma disjoint_left {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₁ → a ∉ l₂ := λ d a, d a