diff --git a/tests/lean/run/class_bug1.lean b/tests/lean/run/class_bug1.lean index 6f41d9deb..ecf0af9a3 100644 --- a/tests/lean/run/class_bug1.lean +++ b/tests/lean/run/class_bug1.lean @@ -20,7 +20,7 @@ context sec_cat parameters {ob : Type} {mor : ob → ob → Type} {Cat : category ob mor} definition compose := rec (λ comp id assoc idr idl, comp) Cat definition id := rec (λ comp id assoc idr idl, id) Cat - infixr `∘`:60 := compose + infixr ∘ := compose inductive is_section {A B : ob} (f : mor A B) : Type := mk : ∀g, g ∘ f = id → is_section f end sec_cat diff --git a/tests/lean/run/class_bug2.lean b/tests/lean/run/class_bug2.lean index 2ef67428f..120c729e0 100644 --- a/tests/lean/run/class_bug2.lean +++ b/tests/lean/run/class_bug2.lean @@ -20,6 +20,6 @@ section sec_cat variables {ob : Type} {mor : ob → ob → Type} {Cat : category ob mor} definition compose := rec (λ comp id assoc idr idl, comp) Cat definition id := rec (λ comp id assoc idr idl, id) Cat - infixr `∘`:60 := compose + infixr ∘ := compose end sec_cat end category diff --git a/tests/lean/run/rel.lean b/tests/lean/run/rel.lean index bcc221ce0..0a78b06eb 100644 --- a/tests/lean/run/rel.lean +++ b/tests/lean/run/rel.lean @@ -2,24 +2,11 @@ import logic algebra.relation open relation namespace is_equivalence - inductive cls {T : Type} (R : T → T → Type) : Prop := + inductive cls {T : Type} (R : T → T → Prop) : Prop := mk : is_reflexive R → is_symmetric R → is_transitive R → cls R - theorem is_reflexive {T : Type} {R : T → T → Type} {C : cls R} : is_reflexive R := - cls.rec (λx y z, x) C - - theorem is_symmetric {T : Type} {R : T → T → Type} {C : cls R} : is_symmetric R := - cls.rec (λx y z, y) C - - theorem is_transitive {T : Type} {R : T → T → Type} {C : cls R} : is_transitive R := - cls.rec (λx y z, z) C - end is_equivalence -instance is_equivalence.is_reflexive -instance is_equivalence.is_symmetric -instance is_equivalence.is_transitive - theorem and_inhabited_left {a : Prop} (b : Prop) (Ha : a) : a ∧ b ↔ b := iff.intro (take Hab, and.elim_right Hab) (take Hb, and.intro Ha Hb)