feat(hott/algebra/category): prove that set is a univalent category assuming is_equiv is an hprop
This commit is contained in:
parent
5b922aad5c
commit
704f2b2697
4 changed files with 50 additions and 282 deletions
|
@ -6,31 +6,49 @@ Module: algebra.category.constructions
|
|||
Authors: Floris van Doorn
|
||||
-/
|
||||
|
||||
import .basic algebra.precategory.constructions
|
||||
import .basic algebra.precategory.constructions types.equiv types.trunc
|
||||
|
||||
--open eq eq.ops equiv category.ops iso category is_trunc
|
||||
open eq category equiv iso is_equiv category.ops is_trunc iso.iso
|
||||
|
||||
--TODO: MOVE THIS
|
||||
namespace equiv
|
||||
variables {A B : Type}
|
||||
protected definition eq_mk' {f f' : A → B} [H : is_equiv f] [H' : is_equiv f'] (p : f = f')
|
||||
: equiv.mk f H = equiv.mk f' H' :=
|
||||
apD011 equiv.mk p sorry --!is_hprop.elim
|
||||
|
||||
protected definition eq_mk {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' :=
|
||||
by (cases f; cases f'; apply (equiv.eq_mk' p))
|
||||
|
||||
end equiv
|
||||
open eq category equiv iso is_equiv category.ops is_trunc iso.iso function sigma
|
||||
|
||||
namespace category
|
||||
|
||||
namespace set
|
||||
local attribute is_equiv_subtype_eq [instance]
|
||||
definition iso_of_equiv {A B : Precategory_hset} (f : A ≃ B) : A ≅ B :=
|
||||
iso.MK (to_fun f)
|
||||
(equiv.to_inv f)
|
||||
(eq_of_homotopy (sect (to_fun f)))
|
||||
(eq_of_homotopy (retr (to_fun f)))
|
||||
|
||||
definition equiv_of_iso {A B : Precategory_hset} (f : A ≅ B) : A ≃ B :=
|
||||
equiv.MK (to_hom f)
|
||||
(iso.to_inv f)
|
||||
(ap10 (right_inverse (to_hom f)))
|
||||
(ap10 (left_inverse (to_hom f)))
|
||||
|
||||
definition is_equiv_iso_of_equiv (A B : Precategory_hset) : is_equiv (@iso_of_equiv A B) :=
|
||||
adjointify _ (λf, equiv_of_iso f)
|
||||
(λf, iso.eq_mk idp)
|
||||
(λf, equiv.eq_mk idp)
|
||||
local attribute is_equiv_iso_of_equiv [instance]
|
||||
|
||||
open sigma.ops
|
||||
definition subtype_eq_inv {A : Type} {B : A → Type} [H : Πa, is_hprop (B a)] (u v : Σa, B a)
|
||||
: u = v → u.1 = v.1 :=
|
||||
(subtype_eq u v)⁻¹ᵉ
|
||||
local attribute subtype_eq_inv [reducible]
|
||||
definition is_equiv_subtype_eq_inv {A : Type} {B : A → Type} [H : Πa, is_hprop (B a)] (u v : Σa, B a)
|
||||
: is_equiv (subtype_eq_inv u v) :=
|
||||
_
|
||||
|
||||
definition iso_of_eq_eq_compose (A B : hset) : @iso_of_eq _ _ A B =
|
||||
@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
||||
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B :=
|
||||
eq_of_homotopy (λp, eq.rec_on p idp)
|
||||
|
||||
definition equiv_equiv_iso (A B : Precategory_hset) : (A ≃ B) ≃ (A ≅ B) :=
|
||||
equiv.MK (λf, iso.MK (to_fun f)
|
||||
(equiv.to_inv f)
|
||||
(eq_of_homotopy (sect (to_fun f)))
|
||||
(eq_of_homotopy (retr (to_fun f))))
|
||||
equiv.MK (λf, iso_of_equiv f)
|
||||
(λf, equiv.MK (to_hom f)
|
||||
(iso.to_inv f)
|
||||
(ap10 (right_inverse (to_hom f)))
|
||||
|
@ -42,11 +60,19 @@ namespace category
|
|||
ua !equiv_equiv_iso
|
||||
|
||||
definition is_univalent (A B : Precategory_hset) : is_equiv (@iso_of_eq _ _ A B) :=
|
||||
sorry
|
||||
have H : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
||||
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from
|
||||
@is_equiv_compose _ _ _ _ _
|
||||
(@is_equiv_compose _ _ _ _ _
|
||||
(@is_equiv_compose _ _ _ _ _
|
||||
_
|
||||
(@is_equiv_subtype_eq_inv _ _ _ _ _))
|
||||
!univalence)
|
||||
!is_equiv_iso_of_equiv,
|
||||
(iso_of_eq_eq_compose A B)⁻¹ ▹ H
|
||||
|
||||
end set
|
||||
|
||||
|
||||
|
||||
definition category_hset [reducible] [instance] : category hset :=
|
||||
category.mk' hset precategory_hset set.is_univalent
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.category.morphism
|
||||
Module: algebra.precategory.iso
|
||||
Author: Floris van Doorn, Jakob von Raumer
|
||||
-/
|
||||
|
||||
|
|
|
@ -1,258 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.category.morphism
|
||||
Author: Floris van Doorn, Jakob von Raumer
|
||||
-/
|
||||
|
||||
import algebra.precategory.basic
|
||||
|
||||
open eq category sigma sigma.ops equiv is_equiv is_trunc
|
||||
|
||||
namespace morphism
|
||||
structure split_mono [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=
|
||||
{retraction_of : b ⟶ a}
|
||||
(retraction_comp : retraction_of ∘ f = id)
|
||||
structure split_epi [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=
|
||||
{section_of : b ⟶ a}
|
||||
(comp_section : f ∘ section_of = id)
|
||||
structure is_iso [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=
|
||||
{inverse : b ⟶ a}
|
||||
(left_inverse : inverse ∘ f = id)
|
||||
(right_inverse : f ∘ inverse = id)
|
||||
|
||||
attribute is_iso [multiple-instances]
|
||||
open split_mono split_epi is_iso
|
||||
definition retraction_of [reducible] := @split_mono.retraction_of
|
||||
definition retraction_comp [reducible] := @split_mono.retraction_comp
|
||||
definition section_of [reducible] := @split_epi.section_of
|
||||
definition comp_section [reducible] := @split_epi.comp_section
|
||||
definition inverse [reducible] := @is_iso.inverse
|
||||
definition left_inverse [reducible] := @is_iso.left_inverse
|
||||
definition right_inverse [reducible] := @is_iso.right_inverse
|
||||
postfix `⁻¹` := inverse
|
||||
--a second notation for the inverse, which is not overloaded
|
||||
postfix [parsing-only] `⁻¹ʰ`:std.prec.max_plus := inverse
|
||||
|
||||
variables {ob : Type} [C : precategory ob]
|
||||
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
|
||||
include C
|
||||
|
||||
definition iso_imp_retraction [instance] [priority 300] [reducible]
|
||||
(f : a ⟶ b) [H : is_iso f] : split_mono f :=
|
||||
split_mono.mk !left_inverse
|
||||
|
||||
definition iso_imp_section [instance] [priority 300] [reducible]
|
||||
(f : a ⟶ b) [H : is_iso f] : split_epi f :=
|
||||
split_epi.mk !right_inverse
|
||||
|
||||
definition is_iso_id [instance] [priority 500] (a : ob) : is_iso (ID a) :=
|
||||
is_iso.mk !id_comp !id_comp
|
||||
|
||||
definition is_iso_inverse [instance] [priority 200] (f : a ⟶ b) [H : is_iso f] : is_iso f⁻¹ :=
|
||||
is_iso.mk !right_inverse !left_inverse
|
||||
|
||||
definition left_inverse_eq_right_inverse {f : a ⟶ b} {g g' : hom b a}
|
||||
(Hl : g ∘ f = id) (Hr : f ∘ g' = id) : g = g' :=
|
||||
by rewrite [-(id_right g), -Hr, assoc, Hl, id_left]
|
||||
|
||||
definition retraction_eq [H : split_mono f] (H2 : f ∘ h = id) : retraction_of f = h :=
|
||||
left_inverse_eq_right_inverse !retraction_comp H2
|
||||
|
||||
definition section_eq [H : split_epi f] (H2 : h ∘ f = id) : section_of f = h :=
|
||||
(left_inverse_eq_right_inverse H2 !comp_section)⁻¹
|
||||
|
||||
definition inverse_eq_right [H : is_iso f] (H2 : f ∘ h = id) : f⁻¹ = h :=
|
||||
left_inverse_eq_right_inverse !left_inverse H2
|
||||
|
||||
definition inverse_eq_left [H : is_iso f] (H2 : h ∘ f = id) : f⁻¹ = h :=
|
||||
(left_inverse_eq_right_inverse H2 !right_inverse)⁻¹
|
||||
|
||||
definition retraction_eq_section (f : a ⟶ b) [Hl : split_mono f] [Hr : split_epi f] :
|
||||
retraction_of f = section_of f :=
|
||||
retraction_eq !comp_section
|
||||
|
||||
definition iso_of_split_epi_of_split_mono (f : a ⟶ b) [Hl : split_mono f] [Hr : split_epi f]
|
||||
: is_iso f :=
|
||||
is_iso.mk ((retraction_eq_section f) ▹ (retraction_comp f)) (comp_section f)
|
||||
|
||||
definition inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H = @inverse _ _ _ _ f H' :=
|
||||
inverse_eq_left !left_inverse
|
||||
|
||||
definition inverse_involutive (f : a ⟶ b) [H : is_iso f] : (f⁻¹)⁻¹ = f :=
|
||||
inverse_eq_right !left_inverse
|
||||
|
||||
definition retraction_id (a : ob) : retraction_of (ID a) = id :=
|
||||
retraction_eq !id_comp
|
||||
|
||||
definition section_id (a : ob) : section_of (ID a) = id :=
|
||||
section_eq !id_comp
|
||||
|
||||
definition id_inverse (a : ob) [H : is_iso (ID a)] : (ID a)⁻¹ = id :=
|
||||
inverse_eq_left !id_comp
|
||||
|
||||
definition split_mono_comp [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b)
|
||||
[Hf : split_mono f] [Hg : split_mono g] : split_mono (g ∘ f) :=
|
||||
split_mono.mk
|
||||
(show (retraction_of f ∘ retraction_of g) ∘ g ∘ f = id,
|
||||
by rewrite [-assoc, assoc _ g f, retraction_comp, id_left, retraction_comp])
|
||||
|
||||
definition split_epi_comp [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b)
|
||||
[Hf : split_epi f] [Hg : split_epi g] : split_epi (g ∘ f) :=
|
||||
split_epi.mk
|
||||
(show (g ∘ f) ∘ section_of f ∘ section_of g = id,
|
||||
by rewrite [-assoc, {f ∘ _}assoc, comp_section, id_left, comp_section])
|
||||
|
||||
definition iso_comp [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b)
|
||||
[Hf : is_iso f] [Hg : is_iso g] : is_iso (g ∘ f) :=
|
||||
!iso_of_split_epi_of_split_mono
|
||||
|
||||
structure isomorphic (a b : ob) :=
|
||||
(to_fun : hom a b)
|
||||
[struct : is_iso to_fun]
|
||||
|
||||
infix `≅`:50 := morphism.isomorphic
|
||||
attribute isomorphic.struct [instance] [priority 400]
|
||||
|
||||
namespace isomorphic
|
||||
attribute to_fun [coercion]
|
||||
|
||||
protected definition refl (a : ob) : a ≅ a :=
|
||||
mk (ID a)
|
||||
|
||||
protected definition symm ⦃a b : ob⦄ (H : a ≅ b) : b ≅ a :=
|
||||
mk (to_fun H)⁻¹
|
||||
|
||||
protected definition trans ⦃a b c : ob⦄ (H1 : a ≅ b) (H2 : b ≅ c) : a ≅ c :=
|
||||
mk (to_fun H2 ∘ to_fun H1)
|
||||
|
||||
end isomorphic
|
||||
|
||||
structure mono [class] (f : a ⟶ b) :=
|
||||
(elim : ∀c (g h : hom c a), f ∘ g = f ∘ h → g = h)
|
||||
structure epi [class] (f : a ⟶ b) :=
|
||||
(elim : ∀c (g h : hom b c), g ∘ f = h ∘ f → g = h)
|
||||
|
||||
definition mono_of_split_mono [instance] (f : a ⟶ b) [H : split_mono f] : mono f :=
|
||||
mono.mk
|
||||
(λ c g h H,
|
||||
calc
|
||||
g = id ∘ g : by rewrite id_left
|
||||
... = (retraction_of f ∘ f) ∘ g : by rewrite -retraction_comp
|
||||
... = (retraction_of f ∘ f) ∘ h : by rewrite [-assoc, H, -assoc]
|
||||
... = id ∘ h : by rewrite retraction_comp
|
||||
... = h : by rewrite id_left)
|
||||
|
||||
definition epi_of_split_epi [instance] (f : a ⟶ b) [H : split_epi f] : epi f :=
|
||||
epi.mk
|
||||
(λ c g h H,
|
||||
calc
|
||||
g = g ∘ id : by rewrite id_right
|
||||
... = g ∘ f ∘ section_of f : by rewrite -comp_section
|
||||
... = h ∘ f ∘ section_of f : by rewrite [assoc, H, -assoc]
|
||||
... = h ∘ id : by rewrite comp_section
|
||||
... = h : by rewrite id_right)
|
||||
|
||||
definition mono_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : mono f] [Hg : mono g]
|
||||
: mono (g ∘ f) :=
|
||||
mono.mk
|
||||
(λ d h₁ h₂ H,
|
||||
have H2 : g ∘ (f ∘ h₁) = g ∘ (f ∘ h₂),
|
||||
begin
|
||||
rewrite *assoc, exact H
|
||||
end,
|
||||
!mono.elim (!mono.elim H2))
|
||||
|
||||
definition epi_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : epi f] [Hg : epi g]
|
||||
: epi (g ∘ f) :=
|
||||
epi.mk
|
||||
(λ d h₁ h₂ H,
|
||||
have H2 : (h₁ ∘ g) ∘ f = (h₂ ∘ g) ∘ f,
|
||||
begin
|
||||
rewrite -*assoc, exact H
|
||||
end,
|
||||
!epi.elim (!epi.elim H2))
|
||||
|
||||
end morphism
|
||||
|
||||
namespace morphism
|
||||
/-
|
||||
rewrite lemmas for inverses, modified from
|
||||
https://github.com/JasonGross/HoTT-categories/blob/master/theories/Categories/Category/Morphisms.v
|
||||
-/
|
||||
namespace to_fun
|
||||
section
|
||||
variables {ob : Type} [C : precategory ob] include C
|
||||
variables {a b c d : ob} (f : b ⟶ a)
|
||||
(r : c ⟶ d) (q : b ⟶ c) (p : a ⟶ b)
|
||||
(g : d ⟶ c)
|
||||
variable [Hq : is_iso q] include Hq
|
||||
definition comp.right_inverse : q ∘ q⁻¹ = id := !right_inverse
|
||||
definition comp.left_inverse : q⁻¹ ∘ q = id := !left_inverse
|
||||
definition inverse_comp_cancel_left : q⁻¹ ∘ (q ∘ p) = p :=
|
||||
by rewrite [assoc, left_inverse, id_left]
|
||||
definition comp_inverse_cancel_left : q ∘ (q⁻¹ ∘ g) = g :=
|
||||
by rewrite [assoc, right_inverse, id_left]
|
||||
definition comp_inverse_cancel_right : (r ∘ q) ∘ q⁻¹ = r :=
|
||||
by rewrite [-assoc, right_inverse, id_right]
|
||||
definition inverse_comp_cancel_right : (f ∘ q⁻¹) ∘ q = f :=
|
||||
by rewrite [-assoc, left_inverse, id_right]
|
||||
|
||||
definition right_inverse [Hp : is_iso p] [Hpq : is_iso (q ∘ p)] : (q ∘ p)⁻¹ʰ = p⁻¹ʰ ∘ q⁻¹ʰ :=
|
||||
inverse_eq_left
|
||||
(show (p⁻¹ʰ ∘ q⁻¹ʰ) ∘ q ∘ p = id, from
|
||||
by rewrite [-assoc, inverse_comp_cancel_left, left_inverse])
|
||||
|
||||
definition inverse_comp_inverse_left [H' : is_iso g] : (q⁻¹ ∘ g)⁻¹ = g⁻¹ ∘ q :=
|
||||
inverse_involutive q ▹ right_inverse q⁻¹ g
|
||||
|
||||
definition inverse_comp_inverse_right [H' : is_iso f] : (q ∘ f⁻¹)⁻¹ = f ∘ q⁻¹ :=
|
||||
inverse_involutive f ▹ right_inverse q f⁻¹
|
||||
|
||||
definition inverse_comp_inverse_inverse [H' : is_iso r] : (q⁻¹ ∘ r⁻¹)⁻¹ = r ∘ q :=
|
||||
inverse_involutive r ▹ inverse_comp_inverse_left q r⁻¹
|
||||
end
|
||||
|
||||
section
|
||||
variables {ob : Type} {C : precategory ob} include C
|
||||
variables {d c b a : ob}
|
||||
{i : b ⟶ c} {f : b ⟶ a}
|
||||
{r : c ⟶ d} {q : b ⟶ c} {p : a ⟶ b}
|
||||
{g : d ⟶ c} {h : c ⟶ b}
|
||||
{x : b ⟶ d} {z : a ⟶ c}
|
||||
{y : d ⟶ b} {w : c ⟶ a}
|
||||
variable [Hq : is_iso q] include Hq
|
||||
|
||||
definition comp_eq_of_eq_inverse_comp (H : y = q⁻¹ ∘ g) : q ∘ y = g :=
|
||||
H⁻¹ ▹ comp_inverse_cancel_left q g
|
||||
definition comp_eq_of_eq_comp_inverse (H : w = f ∘ q⁻¹) : w ∘ q = f :=
|
||||
H⁻¹ ▹ inverse_comp_cancel_right f q
|
||||
definition inverse_comp_eq_of_eq_comp (H : z = q ∘ p) : q⁻¹ ∘ z = p :=
|
||||
H⁻¹ ▹ inverse_comp_cancel_left q p
|
||||
definition comp_inverse_eq_of_eq_comp (H : x = r ∘ q) : x ∘ q⁻¹ = r :=
|
||||
H⁻¹ ▹ comp_inverse_cancel_right r q
|
||||
definition eq_comp_of_inverse_comp_eq (H : q⁻¹ ∘ g = y) : g = q ∘ y :=
|
||||
(comp_eq_of_eq_inverse_comp H⁻¹)⁻¹
|
||||
definition eq_comp_of_comp_inverse_eq (H : f ∘ q⁻¹ = w) : f = w ∘ q :=
|
||||
(comp_eq_of_eq_comp_inverse H⁻¹)⁻¹
|
||||
definition eq_inverse_comp_of_comp_eq (H : q ∘ p = z) : p = q⁻¹ ∘ z :=
|
||||
(inverse_comp_eq_of_eq_comp H⁻¹)⁻¹
|
||||
definition eq_comp_inverse_of_comp_eq (H : r ∘ q = x) : r = x ∘ q⁻¹ :=
|
||||
(comp_inverse_eq_of_eq_comp H⁻¹)⁻¹
|
||||
definition eq_inverse_of_comp_eq_id' (H : h ∘ q = id) : h = q⁻¹ := (inverse_eq_left H)⁻¹
|
||||
definition eq_inverse_of_comp_eq_id (H : q ∘ h = id) : h = q⁻¹ := (inverse_eq_right H)⁻¹
|
||||
definition eq_of_comp_inverse_eq_id (H : i ∘ q⁻¹ = id) : i = q :=
|
||||
eq_inverse_of_comp_eq_id' H ⬝ inverse_involutive q
|
||||
definition eq_of_inverse_comp_eq_id (H : q⁻¹ ∘ i = id) : i = q :=
|
||||
eq_inverse_of_comp_eq_id H ⬝ inverse_involutive q
|
||||
definition eq_of_id_eq_comp_inverse (H : id = i ∘ q⁻¹) : q = i := (eq_of_comp_inverse_eq_id H⁻¹)⁻¹
|
||||
definition eq_of_id_eq_inverse_comp (H : id = q⁻¹ ∘ i) : q = i := (eq_of_inverse_comp_eq_id H⁻¹)⁻¹
|
||||
definition inverse_eq_of_id_eq_comp (H : id = h ∘ q) : q⁻¹ = h :=
|
||||
(eq_inverse_of_comp_eq_id' H⁻¹)⁻¹
|
||||
definition inverse_eq_of_id_eq_comp' (H : id = q ∘ h) : q⁻¹ = h :=
|
||||
(eq_inverse_of_comp_eq_id H⁻¹)⁻¹
|
||||
end
|
||||
end to_fun
|
||||
|
||||
end morphism
|
|
@ -204,9 +204,9 @@ order for the change to take effect."
|
|||
("~~" . ("≈")) ("~~n" . ("≉"))
|
||||
("~~~" . ("≋"))
|
||||
(":~" . ("∻"))
|
||||
("~-" . ("≃")) ("~-n" . ("≄"))
|
||||
("~-" . ("≃")) ("~-n" . ("≄")) ("equiv" . ("≃"))
|
||||
("-~" . ("≂"))
|
||||
("~=" . ("≅")) ("~=n" . ("≇"))
|
||||
("~=" . ("≅")) ("~=n" . ("≇")) ("iso" . ("≅"))
|
||||
("~~-" . ("≊"))
|
||||
("==" . ("≡")) ("==n" . ("≢"))
|
||||
("===" . ("≣"))
|
||||
|
|
Loading…
Reference in a new issue