refactor(builtin/heq): cleanup universes

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-17 14:52:09 -08:00
parent fc4c6454a7
commit 70828af6db
4 changed files with 25 additions and 26 deletions

View file

@ -1,10 +1,10 @@
import heq import heq
variable cast {A B : TypeH} : A = B → A → B variable cast {A B : TypeM} : A = B → A → B
axiom cast_heq {A B : TypeH} (H : A = B) (a : A) : cast H a == a axiom cast_heq {A B : TypeM} (H : A = B) (a : A) : cast H a == a
theorem cast_app {A A' : TypeH} {B : A → TypeH} {B' : A' → TypeH} (f : ∀ x, B x) (a : A) (Ha : A = A') (Hb : (∀ x, B x) = (∀ x, B' x)) : theorem cast_app {A A' : TypeM} {B : A → TypeM} {B' : A' → TypeM} (f : ∀ x, B x) (a : A) (Ha : A = A') (Hb : (∀ x, B x) = (∀ x, B' x)) :
cast Hb f (cast Ha a) == f a cast Hb f (cast Ha a) == f a
:= let s1 : cast Hb f == f := cast_heq Hb f, := let s1 : cast Hb f == f := cast_heq Hb f,
s2 : cast Ha a == a := cast_heq Ha a s2 : cast Ha a == a := cast_heq Ha a
@ -12,24 +12,18 @@ theorem cast_app {A A' : TypeH} {B : A → TypeH} {B' : A' → TypeH} (f : ∀ x
-- The following theorems can be used as rewriting rules -- The following theorems can be used as rewriting rules
theorem cast_eq {A : TypeH} (H : A = A) (a : A) : cast H a = a theorem cast_eq {A : TypeM} (H : A = A) (a : A) : cast H a = a
:= to_eq (cast_heq H a) := to_eq (cast_heq H a)
theorem cast_trans {A B C : TypeH} (Hab : A = B) (Hbc : B = C) (a : A) : cast Hbc (cast Hab a) = cast (trans Hab Hbc) a theorem cast_trans {A B C : TypeM} (Hab : A = B) (Hbc : B = C) (a : A) : cast Hbc (cast Hab a) = cast (trans Hab Hbc) a
:= let s1 : cast Hbc (cast Hab a) == cast Hab a := cast_heq Hbc (cast Hab a), := let s1 : cast Hbc (cast Hab a) == cast Hab a := cast_heq Hbc (cast Hab a),
s2 : cast Hab a == a := cast_heq Hab a, s2 : cast Hab a == a := cast_heq Hab a,
s3 : cast (trans Hab Hbc) a == a := cast_heq (trans Hab Hbc) a, s3 : cast (trans Hab Hbc) a == a := cast_heq (trans Hab Hbc) a,
s4 : cast Hbc (cast Hab a) == cast (trans Hab Hbc) a := htrans (htrans s1 s2) (hsymm s3) s4 : cast Hbc (cast Hab a) == cast (trans Hab Hbc) a := htrans (htrans s1 s2) (hsymm s3)
in to_eq s4 in to_eq s4
theorem cast_pull {A : TypeH} {B B' : A → TypeH} (f : ∀ x, B x) (a : A) (Hb : (∀ x, B x) = (∀ x, B' x)) (Hba : (B a) = (B' a)) : theorem cast_pull {A : TypeM} {B B' : A → TypeM} (f : ∀ x, B x) (a : A) (Hb : (∀ x, B x) = (∀ x, B' x)) (Hba : (B a) = (B' a)) :
cast Hb f a = cast Hba (f a) cast Hb f a = cast Hba (f a)
:= let s1 : cast Hb f a == f a := hcongr (cast_heq Hb f) (hrefl a), := let s1 : cast Hb f a == f a := hcongr (cast_heq Hb f) (hrefl a),
s2 : cast Hba (f a) == f a := cast_heq Hba (f a) s2 : cast Hba (f a) == f a := cast_heq Hba (f a)
in to_eq (htrans s1 (hsymm s2)) in to_eq (htrans s1 (hsymm s2))

View file

@ -4,33 +4,38 @@ import macros
variable heq {A B : TypeU} : A → B → Bool variable heq {A B : TypeU} : A → B → Bool
infixl 50 == : heq infixl 50 == : heq
universe H ≥ 1 axiom heq_eq {A : TypeU} (a b : A) : a == b ↔ a = b
universe U ≥ H + 1
definition TypeH := (Type H)
axiom heq_eq {A : TypeH} (a b : A) : a == b ↔ a = b definition to_eq {A : TypeU} {a b : A} (H : a == b) : a = b
definition to_eq {A : TypeH} {a b : A} (H : a == b) : a = b
:= (heq_eq a b) ◂ H := (heq_eq a b) ◂ H
definition to_heq {A : TypeH} {a b : A} (H : a = b) : a == b definition to_heq {A : TypeU} {a b : A} (H : a = b) : a == b
:= (symm (heq_eq a b)) ◂ H := (symm (heq_eq a b)) ◂ H
theorem hrefl {A : TypeH} (a : A) : a == a theorem hrefl {A : TypeU} (a : A) : a == a
:= to_heq (refl a) := to_heq (refl a)
axiom hsymm {A B : TypeH} {a : A} {b : B} : a == b → b == a axiom hsymm {A B : TypeU} {a : A} {b : B} : a == b → b == a
axiom htrans {A B C : TypeH} {a : A} {b : B} {c : C} : a == b → b == c → a == c axiom htrans {A B C : TypeU} {a : A} {b : B} {c : C} : a == b → b == c → a == c
axiom hcongr {A A' : TypeH} {B : A → TypeH} {B' : A' → TypeH} {f : ∀ x, B x} {f' : ∀ x, B' x} {a : A} {a' : A'} : axiom hcongr {A A' : TypeU} {B : A → TypeU} {B' : A' → TypeU} {f : ∀ x, B x} {f' : ∀ x, B' x} {a : A} {a' : A'} :
f == f' → a == a' → f a == f' a' f == f' → a == a' → f a == f' a'
axiom hfunext {A A' : TypeH} {B : A → TypeH} {B' : A' → TypeH} {f : ∀ x, B x} {f' : ∀ x, B' x} : universe M ≥ 1
universe U ≥ M + 1
definition TypeM := (Type M)
-- In the following definitions the type of A and A' cannot be TypeU
-- because A = A' would be @eq (Type U+1) A A', and
-- the type of eq is (∀T : (Type U), T → T → bool).
-- So, we define M a universe smaller than U.
axiom hfunext {A A' : TypeM} {B : A → TypeU} {B' : A' → TypeU} {f : ∀ x, B x} {f' : ∀ x, B' x} :
A = A' → (∀ x x', x == x' → f x == f' x') → f == f' A = A' → (∀ x x', x == x' → f x == f' x') → f == f'
axiom hpiext {A A' : TypeH} {B : A → TypeH} {B' : A' → TypeH} : axiom hpiext {A A' : TypeM} {B : A → TypeM} {B' : A' → TypeM} :
A = A' → (∀ x x', x == x' → B x == B' x') → (∀ x, B x) == (∀ x, B' x) A = A' → (∀ x x', x == x' → B x == B' x') → (∀ x, B x) == (∀ x, B' x)
axiom hallext {A A' : TypeH} {B : A → Bool} {B' : A' → Bool} : axiom hallext {A A' : TypeM} {B : A → Bool} {B' : A' → Bool} :
A = A' → (∀ x x', x == x' → B x == B' x') → (∀ x, B x) == (∀ x, B' x) A = A' → (∀ x x', x == x' → B x == B' x') → (∀ x, B x) == (∀ x, B' x)

Binary file not shown.

Binary file not shown.