feat(library/algebra/order,library/data/nat/order,library/*): instantiate nat to lattice, add theorems
This commit is contained in:
parent
93e5124d71
commit
70e551c6d6
6 changed files with 88 additions and 57 deletions
|
@ -301,8 +301,7 @@ definition strong_order_pair.to_order_pair [trans-instance] [coercion] [reducibl
|
|||
lt_irrefl := lt_irrefl',
|
||||
le_of_lt := le_of_lt',
|
||||
lt_of_le_of_lt := lt_of_le_of_lt',
|
||||
lt_of_lt_of_le := lt_of_lt_of_le'
|
||||
⦄
|
||||
lt_of_lt_of_le := lt_of_lt_of_le' ⦄
|
||||
|
||||
/- linear orders -/
|
||||
|
||||
|
@ -450,48 +449,24 @@ section
|
|||
le_max_right := le_dlo_max_right,
|
||||
max_le := dlo_max_le ⦄
|
||||
|
||||
/-
|
||||
definition max (a b : A) : A :=
|
||||
if a < b then b else a
|
||||
/- These don't require decidability, but it is not clear whether it is worth breaking out
|
||||
a new class, linearly_ordered_lattice. Currently nat is the only instance that doesn't
|
||||
use decidable_linear_order (because max and min are defined separately, in init),
|
||||
so we simply reprove these theorems there. -/
|
||||
|
||||
definition min (a b : A) : A :=
|
||||
if a < b then a else b
|
||||
|
||||
theorem max_a_a (a : A) : a = max a a :=
|
||||
eq.rec_on !if_t_t rfl
|
||||
|
||||
theorem max.eq_right {a b : A} (H : a < b) : max a b = b :=
|
||||
if_pos H
|
||||
|
||||
theorem max.eq_left {a b : A} (H : ¬ a < b) : max a b = a :=
|
||||
if_neg H
|
||||
|
||||
theorem max.right_eq {a b : A} (H : a < b) : b = max a b :=
|
||||
eq.rec_on (max.eq_right H) rfl
|
||||
|
||||
theorem max.left_eq {a b : A} (H : ¬ a < b) : a = max a b :=
|
||||
eq.rec_on (max.eq_left H) rfl
|
||||
|
||||
theorem max.left (a b : A) : a ≤ max a b :=
|
||||
theorem lt_min {a b c : A} (H₁ : a < b) (H₂ : a < c) : a < min b c :=
|
||||
by_cases
|
||||
(λ h : a < b, le_of_lt (eq.rec_on (max.right_eq h) h))
|
||||
(λ h : ¬ a < b, eq.rec_on (max.eq_left h) !le.refl)
|
||||
(assume H : b ≤ c, by rewrite (min_eq_left H); apply H₁)
|
||||
(assume H : ¬ b ≤ c,
|
||||
assert H' : c ≤ b, from le_of_lt (lt_of_not_ge H),
|
||||
by rewrite (min_eq_right H'); apply H₂)
|
||||
|
||||
theorem eq_or_lt_of_not_lt (H : ¬ a < b) : a = b ∨ b < a :=
|
||||
have H' : b = a ∨ b < a, from or.swap (lt_or_eq_of_le (le_of_not_gt H)),
|
||||
or.elim H'
|
||||
(take H'' : b = a, or.inl (symm H''))
|
||||
(take H'' : b < a, or.inr H'')
|
||||
|
||||
theorem max.right (a b : A) : b ≤ max a b :=
|
||||
theorem max_lt {a b c : A} (H₁ : a < c) (H₂ : b < c) : max a b < c :=
|
||||
by_cases
|
||||
(λ h : a < b, eq.rec_on (max.eq_right h) !le.refl)
|
||||
(λ h : ¬ a < b, or.rec_on (eq_or_lt_of_not_lt h)
|
||||
(λ heq, eq.rec_on heq (eq.rec_on (max_a_a a) !le.refl))
|
||||
(λ h : b < a,
|
||||
have aux : a = max a b, from max.left_eq (lt.asymm h),
|
||||
eq.rec_on aux (le_of_lt h)))
|
||||
-/
|
||||
(assume H : a ≤ b, by rewrite (max_eq_right H); apply H₂)
|
||||
(assume H : ¬ a ≤ b,
|
||||
assert H' : b ≤ a, from le_of_lt (lt_of_not_ge H),
|
||||
by rewrite (max_eq_left H'); apply H₁)
|
||||
end
|
||||
|
||||
end algebra
|
||||
|
|
|
@ -97,7 +97,6 @@ section
|
|||
rewrite zero_mul at H,
|
||||
exact H
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
structure linear_ordered_semiring [class] (A : Type)
|
||||
|
@ -185,7 +184,8 @@ section
|
|||
not_le_of_gt (mul_pos H2 H1) H)
|
||||
end
|
||||
|
||||
structure ordered_ring [class] (A : Type) extends ring A, ordered_comm_group A, zero_ne_one_class A :=
|
||||
structure ordered_ring [class] (A : Type)
|
||||
extends ring A, ordered_comm_group A, zero_ne_one_class A :=
|
||||
(mul_nonneg : ∀a b, le zero a → le zero b → le zero (mul a b))
|
||||
(mul_pos : ∀a b, lt zero a → lt zero b → lt zero (mul a b))
|
||||
|
||||
|
@ -225,7 +225,8 @@ begin
|
|||
exact (iff.mp !sub_pos_iff_lt H2)
|
||||
end
|
||||
|
||||
definition ordered_ring.to_ordered_semiring [trans-instance] [coercion] [reducible] [s : ordered_ring A] :
|
||||
definition ordered_ring.to_ordered_semiring [trans-instance] [coercion] [reducible]
|
||||
[s : ordered_ring A] :
|
||||
ordered_semiring A :=
|
||||
⦃ ordered_semiring, s,
|
||||
mul_zero := mul_zero,
|
||||
|
@ -302,11 +303,10 @@ end
|
|||
|
||||
-- TODO: we can eliminate mul_pos_of_pos, but now it is not worth the effort to redeclare the
|
||||
-- class instance
|
||||
structure linear_ordered_ring [class] (A : Type) extends ordered_ring A, linear_strong_order_pair A :=
|
||||
structure linear_ordered_ring [class] (A : Type)
|
||||
extends ordered_ring A, linear_strong_order_pair A :=
|
||||
(zero_lt_one : lt zero one)
|
||||
|
||||
-- print fields linear_ordered_semiring
|
||||
|
||||
definition linear_ordered_ring.to_linear_ordered_semiring [trans-instance] [coercion] [reducible]
|
||||
[s : linear_ordered_ring A] :
|
||||
linear_ordered_semiring A :=
|
||||
|
|
|
@ -281,6 +281,7 @@ section migrate_algebra
|
|||
show decidable (b ≤ a), from _
|
||||
definition decidable_gt [instance] (a b : ℤ) : decidable (a > b) :=
|
||||
show decidable (b < a), from _
|
||||
|
||||
definition min : ℤ → ℤ → ℤ := algebra.min
|
||||
definition max : ℤ → ℤ → ℤ := algebra.max
|
||||
definition abs : ℤ → ℤ := algebra.abs
|
||||
|
|
|
@ -111,7 +111,35 @@ lt_of_lt_of_le H2 H3
|
|||
theorem mul_lt_mul_of_pos_right {n m k : ℕ} (H : n < m) (Hk : k > 0) : n * k < m * k :=
|
||||
!mul.comm ▸ !mul.comm ▸ mul_lt_mul_of_pos_left H Hk
|
||||
|
||||
/- nat is an instance of a linearly ordered semiring -/
|
||||
/- min and max -/
|
||||
|
||||
-- Because these are defined in init/nat.lean, we cannot use the definitions in algebra.
|
||||
|
||||
theorem max_le {n m k : ℕ} (H₁ : n ≤ k) (H₂ : m ≤ k) : max n m ≤ k :=
|
||||
decidable.by_cases
|
||||
(assume H : n < m, by rewrite [↑max, if_pos H]; apply H₂)
|
||||
(assume H : ¬ n < m, by rewrite [↑max, if_neg H]; apply H₁)
|
||||
|
||||
theorem min_le_left (n m : ℕ) : min n m ≤ n :=
|
||||
decidable.by_cases
|
||||
(assume H : n < m, by rewrite [↑min, if_pos H])
|
||||
(assume H : ¬ n < m,
|
||||
assert H' : m ≤ n, from or_resolve_right !lt_or_ge H,
|
||||
by rewrite [↑min, if_neg H]; apply H')
|
||||
|
||||
theorem min_le_right (n m : ℕ) : min n m ≤ m :=
|
||||
decidable.by_cases
|
||||
(assume H : n < m, by rewrite [↑min, if_pos H]; apply le_of_lt H)
|
||||
(assume H : ¬ n < m,
|
||||
assert H' : m ≤ n, from or_resolve_right !lt_or_ge H,
|
||||
by rewrite [↑min, if_neg H])
|
||||
|
||||
theorem le_min {n m k : ℕ} (H₁ : k ≤ n) (H₂ : k ≤ m) : k ≤ min n m :=
|
||||
decidable.by_cases
|
||||
(assume H : n < m, by rewrite [↑min, if_pos H]; apply H₁)
|
||||
(assume H : ¬ n < m, by rewrite [↑min, if_neg H]; apply H₂)
|
||||
|
||||
/- nat is an instance of a linearly ordered semiring and a lattice-/
|
||||
|
||||
section migrate_algebra
|
||||
open [classes] algebra
|
||||
|
@ -143,10 +171,22 @@ section migrate_algebra
|
|||
mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left,
|
||||
mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right ⦄
|
||||
|
||||
protected definition lattice [reducible] : algebra.lattice nat :=
|
||||
⦃ algebra.lattice, nat.linear_ordered_semiring,
|
||||
min := min,
|
||||
max := max,
|
||||
min_le_left := min_le_left,
|
||||
min_le_right := min_le_right,
|
||||
le_min := @le_min,
|
||||
le_max_left := le_max_left,
|
||||
le_max_right := le_max_right,
|
||||
max_le := @max_le ⦄
|
||||
|
||||
local attribute nat.linear_ordered_semiring [instance]
|
||||
local attribute nat.lattice [instance]
|
||||
|
||||
migrate from algebra with nat
|
||||
replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt
|
||||
replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, min → min, max → max
|
||||
hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos,
|
||||
add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le,
|
||||
le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg,
|
||||
|
@ -390,4 +430,20 @@ dvd.elim H
|
|||
assume H1 : 1 = n * m,
|
||||
eq_one_of_mul_eq_one_right H1⁻¹)
|
||||
|
||||
/- min and max -/
|
||||
|
||||
theorem lt_min {a b c : ℕ} (H₁ : a < b) (H₂ : a < c) : a < min b c :=
|
||||
decidable.by_cases
|
||||
(assume H : b ≤ c, by rewrite (min_eq_left H); apply H₁)
|
||||
(assume H : ¬ b ≤ c,
|
||||
assert H' : c ≤ b, from le_of_lt (lt_of_not_ge H),
|
||||
by rewrite (min_eq_right H'); apply H₂)
|
||||
|
||||
theorem max_lt {a b c : ℕ} (H₁ : a < c) (H₂ : b < c) : max a b < c :=
|
||||
decidable.by_cases
|
||||
(assume H : a ≤ b, by rewrite (max_eq_right H); apply H₂)
|
||||
(assume H : ¬ a ≤ b,
|
||||
assert H' : b ≤ a, from le_of_lt (lt_of_not_ge H),
|
||||
by rewrite (max_eq_left H'); apply H₁)
|
||||
|
||||
end nat
|
||||
|
|
|
@ -73,11 +73,11 @@ theorem max_right (a b : ℕ+) : max a b ≥ b := !le_max_right
|
|||
theorem max_left (a b : ℕ+) : max a b ≥ a := !le_max_left
|
||||
|
||||
theorem max_eq_right {a b : ℕ+} (H : a < b) : max a b = b :=
|
||||
have Hnat : nat.max a~ b~ = b~, from nat.max_eq_right H,
|
||||
have Hnat : nat.max a~ b~ = b~, from nat.max_eq_right' H,
|
||||
pnat.eq Hnat
|
||||
|
||||
theorem max_eq_left {a b : ℕ+} (H : ¬ a < b) : max a b = a :=
|
||||
have Hnat : nat.max a~ b~ = a~, from nat.max_eq_left H,
|
||||
have Hnat : nat.max a~ b~ = a~, from nat.max_eq_left' H,
|
||||
pnat.eq Hnat
|
||||
|
||||
theorem le_of_lt {a b : ℕ+} (H : a < b) : a ≤ b := nat.le_of_lt H
|
||||
|
|
|
@ -5,7 +5,6 @@ Authors: Floris van Doorn, Leonardo de Moura
|
|||
-/
|
||||
prelude
|
||||
import init.wf init.tactic init.num
|
||||
|
||||
open eq.ops decidable or
|
||||
|
||||
namespace nat
|
||||
|
@ -40,7 +39,6 @@ namespace nat
|
|||
notation a - b := sub a b
|
||||
notation a * b := mul a b
|
||||
|
||||
|
||||
/- properties of ℕ -/
|
||||
|
||||
protected definition is_inhabited [instance] : inhabited nat :=
|
||||
|
@ -226,17 +224,18 @@ namespace nat
|
|||
theorem max_self (a : ℕ) : max a a = a :=
|
||||
eq.rec_on !if_t_t rfl
|
||||
|
||||
theorem max_eq_right {a b : ℕ} (H : a < b) : max a b = b :=
|
||||
theorem max_eq_right' {a b : ℕ} (H : a < b) : max a b = b :=
|
||||
if_pos H
|
||||
|
||||
theorem max_eq_left {a b : ℕ} (H : ¬ a < b) : max a b = a :=
|
||||
-- different versions will be defined in algebra
|
||||
theorem max_eq_left' {a b : ℕ} (H : ¬ a < b) : max a b = a :=
|
||||
if_neg H
|
||||
|
||||
theorem eq_max_right {a b : ℕ} (H : a < b) : b = max a b :=
|
||||
eq.rec_on (max_eq_right H) rfl
|
||||
eq.rec_on (max_eq_right' H) rfl
|
||||
|
||||
theorem eq_max_left {a b : ℕ} (H : ¬ a < b) : a = max a b :=
|
||||
eq.rec_on (max_eq_left H) rfl
|
||||
eq.rec_on (max_eq_left' H) rfl
|
||||
|
||||
theorem le_max_left (a b : ℕ) : a ≤ max a b :=
|
||||
by_cases
|
||||
|
|
Loading…
Reference in a new issue