doc(demo): remove Lean 0.1 demo files

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-05-17 10:43:30 -07:00
parent 3a0861bca7
commit 7142c0fed3
13 changed files with 0 additions and 1379 deletions

View file

@ -1,360 +0,0 @@
import kernel
import macros
variable Nat : Type
alias : Nat
namespace Nat
builtin numeral
builtin add : Nat → Nat → Nat
infixl 65 + : add
builtin mul : Nat → Nat → Nat
infixl 70 * : mul
builtin le : Nat → Nat → Bool
infix 50 <= : le
infix 50 ≤ : le
definition ge (a b : Nat) := b ≤ a
infix 50 >= : ge
infix 50 ≥ : ge
definition lt (a b : Nat) := a + 1 ≤ b
infix 50 < : lt
definition gt (a b : Nat) := b < a
infix 50 > : gt
definition id (a : Nat) := a
notation 55 | _ | : id
axiom succ_nz (a : Nat) : a + 1 ≠ 0
axiom succ_inj {a b : Nat} (H : a + 1 = b + 1) : a = b
axiom add_zeror (a : Nat) : a + 0 = a
axiom add_succr (a b : Nat) : a + (b + 1) = (a + b) + 1
axiom mul_zeror (a : Nat) : a * 0 = 0
axiom mul_succr (a b : Nat) : a * (b + 1) = a * b + a
axiom le_def (a b : Nat) : a ≤ b ↔ ∃ c, a + c = b
axiom induction {P : Nat → Bool} (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : ∀ a, P a
theorem induction_on {P : Nat → Bool} (a : Nat) (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : P a
:= induction H1 H2 a
theorem pred_nz {a : Nat} : a ≠ 0 → ∃ b, b + 1 = a
:= induction_on a
(λ H : 0 ≠ 0, false_elim (∃ b, b + 1 = 0) H)
(λ (n : Nat) (iH : n ≠ 0 → ∃ b, b + 1 = n) (H : n + 1 ≠ 0),
or_elim (em (n = 0))
(λ Heq0 : n = 0, exists_intro 0 (calc 0 + 1 = n + 1 : { symm Heq0 }))
(λ Hne0 : n ≠ 0,
obtain (w : Nat) (Hw : w + 1 = n), from (iH Hne0),
exists_intro (w + 1) (calc w + 1 + 1 = n + 1 : { Hw })))
theorem discriminate {B : Bool} {a : Nat} (H1: a = 0 → B) (H2 : ∀ n, a = n + 1 → B) : B
:= or_elim (em (a = 0))
(λ Heq0 : a = 0, H1 Heq0)
(λ Hne0 : a ≠ 0, obtain (w : Nat) (Hw : w + 1 = a), from (pred_nz Hne0),
H2 w (symm Hw))
theorem add_zerol (a : Nat) : 0 + a = a
:= induction_on a
(have 0 + 0 = 0 : trivial)
(λ (n : Nat) (iH : 0 + n = n),
calc 0 + (n + 1) = (0 + n) + 1 : add_succr 0 n
... = n + 1 : { iH })
theorem add_succl (a b : Nat) : (a + 1) + b = (a + b) + 1
:= induction_on b
(calc (a + 1) + 0 = a + 1 : add_zeror (a + 1)
... = (a + 0) + 1 : { symm (add_zeror a) })
(λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1),
calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : add_succr (a + 1) n
... = ((a + n) + 1) + 1 : { iH }
... = (a + (n + 1)) + 1 : { have (a + n) + 1 = a + (n + 1) : symm (add_succr a n) })
theorem add_comm (a b : Nat) : a + b = b + a
:= induction_on b
(calc a + 0 = a : add_zeror a
... = 0 + a : symm (add_zerol a))
(λ (n : Nat) (iH : a + n = n + a),
calc a + (n + 1) = (a + n) + 1 : add_succr a n
... = (n + a) + 1 : { iH }
... = (n + 1) + a : symm (add_succl n a))
theorem add_assoc (a b c : Nat) : (a + b) + c = a + (b + c)
:= symm (induction_on a
(calc 0 + (b + c) = b + c : add_zerol (b + c)
... = (0 + b) + c : { symm (add_zerol b) })
(λ (n : Nat) (iH : n + (b + c) = (n + b) + c),
calc (n + 1) + (b + c) = (n + (b + c)) + 1 : add_succl n (b + c)
... = ((n + b) + c) + 1 : { iH }
... = ((n + b) + 1) + c : symm (add_succl (n + b) c)
... = ((n + 1) + b) + c : { have (n + b) + 1 = (n + 1) + b : symm (add_succl n b) }))
theorem mul_zerol (a : Nat) : 0 * a = 0
:= induction_on a
(have 0 * 0 = 0 : trivial)
(λ (n : Nat) (iH : 0 * n = 0),
calc 0 * (n + 1) = (0 * n) + 0 : mul_succr 0 n
... = 0 + 0 : { iH }
... = 0 : trivial)
theorem mul_succl (a b : Nat) : (a + 1) * b = a * b + b
:= induction_on b
(calc (a + 1) * 0 = 0 : mul_zeror (a + 1)
... = a * 0 : symm (mul_zeror a)
... = a * 0 + 0 : symm (add_zeror (a * 0)))
(λ (n : Nat) (iH : (a + 1) * n = a * n + n),
calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : mul_succr (a + 1) n
... = a * n + n + (a + 1) : { iH }
... = a * n + n + a + 1 : symm (add_assoc (a * n + n) a 1)
... = a * n + (n + a) + 1 : { have a * n + n + a = a * n + (n + a) : add_assoc (a * n) n a }
... = a * n + (a + n) + 1 : { add_comm n a }
... = a * n + a + n + 1 : { symm (add_assoc (a * n) a n) }
... = a * (n + 1) + n + 1 : { symm (mul_succr a n) }
... = a * (n + 1) + (n + 1) : add_assoc (a * (n + 1)) n 1)
theorem mul_onel (a : Nat) : 1 * a = a
:= induction_on a
(have 1 * 0 = 0 : trivial)
(λ (n : Nat) (iH : 1 * n = n),
calc 1 * (n + 1) = 1 * n + 1 : mul_succr 1 n
... = n + 1 : { iH })
theorem mul_oner (a : Nat) : a * 1 = a
:= induction_on a
(have 0 * 1 = 0 : trivial)
(λ (n : Nat) (iH : n * 1 = n),
calc (n + 1) * 1 = n * 1 + 1 : mul_succl n 1
... = n + 1 : { iH })
theorem mul_comm (a b : Nat) : a * b = b * a
:= induction_on b
(calc a * 0 = 0 : mul_zeror a
... = 0 * a : symm (mul_zerol a))
(λ (n : Nat) (iH : a * n = n * a),
calc a * (n + 1) = a * n + a : mul_succr a n
... = n * a + a : { iH }
... = (n + 1) * a : symm (mul_succl n a))
theorem distributer (a b c : Nat) : a * (b + c) = a * b + a * c
:= induction_on a
(calc 0 * (b + c) = 0 : mul_zerol (b + c)
... = 0 + 0 : trivial
... = 0 * b + 0 : { symm (mul_zerol b) }
... = 0 * b + 0 * c : { symm (mul_zerol c) })
(λ (n : Nat) (iH : n * (b + c) = n * b + n * c),
calc (n + 1) * (b + c) = n * (b + c) + (b + c) : mul_succl n (b + c)
... = n * b + n * c + (b + c) : { iH }
... = n * b + n * c + b + c : symm (add_assoc (n * b + n * c) b c)
... = n * b + (n * c + b) + c : { add_assoc (n * b) (n * c) b }
... = n * b + (b + n * c) + c : { add_comm (n * c) b }
... = n * b + b + n * c + c : { symm (add_assoc (n * b) b (n * c)) }
... = (n + 1) * b + n * c + c : { symm (mul_succl n b) }
... = (n + 1) * b + (n * c + c) : add_assoc ((n + 1) * b) (n * c) c
... = (n + 1) * b + (n + 1) * c : { symm (mul_succl n c) })
theorem distributel (a b c : Nat) : (a + b) * c = a * c + b * c
:= calc (a + b) * c = c * (a + b) : mul_comm (a + b) c
... = c * a + c * b : distributer c a b
... = a * c + c * b : { mul_comm c a }
... = a * c + b * c : { mul_comm c b }
theorem mul_assoc (a b c : Nat) : (a * b) * c = a * (b * c)
:= symm (induction_on a
(calc 0 * (b * c) = 0 : mul_zerol (b * c)
... = 0 * c : symm (mul_zerol c)
... = (0 * b) * c : { symm (mul_zerol b) })
(λ (n : Nat) (iH : n * (b * c) = n * b * c),
calc (n + 1) * (b * c) = n * (b * c) + (b * c) : mul_succl n (b * c)
... = n * b * c + (b * c) : { iH }
... = (n * b + b) * c : symm (distributel (n * b) b c)
... = (n + 1) * b * c : { symm (mul_succl n b) }))
theorem add_left_comm (a b c : Nat) : a + (b + c) = b + (a + c)
:= left_comm add_comm add_assoc a b c
theorem mul_left_comm (a b c : Nat) : a * (b * c) = b * (a * c)
:= left_comm mul_comm mul_assoc a b c
theorem add_injr {a b c : Nat} : a + b = a + c → b = c
:= induction_on a
(λ H : 0 + b = 0 + c,
calc b = 0 + b : symm (add_zerol b)
... = 0 + c : H
... = c : add_zerol c)
(λ (n : Nat) (iH : n + b = n + c → b = c) (H : n + 1 + b = n + 1 + c),
let L1 : n + b + 1 = n + c + 1
:= (calc n + b + 1 = n + (b + 1) : add_assoc n b 1
... = n + (1 + b) : { add_comm b 1 }
... = n + 1 + b : symm (add_assoc n 1 b)
... = n + 1 + c : H
... = n + (1 + c) : add_assoc n 1 c
... = n + (c + 1) : { add_comm 1 c }
... = n + c + 1 : symm (add_assoc n c 1)),
L2 : n + b = n + c := succ_inj L1
in iH L2)
theorem add_injl {a b c : Nat} (H : a + b = c + b) : a = c
:= add_injr (calc b + a = a + b : add_comm _ _
... = c + b : H
... = b + c : add_comm _ _)
theorem add_eqz {a b : Nat} (H : a + b = 0) : a = 0
:= discriminate
(λ H1 : a = 0, H1)
(λ (n : Nat) (H1 : a = n + 1),
absurd_elim (a = 0)
H (calc a + b = n + 1 + b : { H1 }
... = n + (1 + b) : add_assoc n 1 b
... = n + (b + 1) : { add_comm 1 b }
... = n + b + 1 : symm (add_assoc n b 1)
... ≠ 0 : succ_nz (n + b)))
theorem le_intro {a b c : Nat} (H : a + c = b) : a ≤ b
:= (symm (le_def a b)) ◂ (have (∃ x, a + x = b) : exists_intro c H)
theorem le_elim {a b : Nat} (H : a ≤ b) : ∃ x, a + x = b
:= (le_def a b) ◂ H
theorem le_refl (a : Nat) : a ≤ a := le_intro (add_zeror a)
theorem le_zero (a : Nat) : 0 ≤ a := le_intro (add_zerol a)
theorem le_trans {a b c : Nat} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c
:= obtain (w1 : Nat) (Hw1 : a + w1 = b), from (le_elim H1),
obtain (w2 : Nat) (Hw2 : b + w2 = c), from (le_elim H2),
le_intro (calc a + (w1 + w2) = a + w1 + w2 : symm (add_assoc a w1 w2)
... = b + w2 : { Hw1 }
... = c : Hw2)
theorem le_add {a b : Nat} (H : a ≤ b) (c : Nat) : a + c ≤ b + c
:= obtain (w : Nat) (Hw : a + w = b), from (le_elim H),
le_intro (calc a + c + w = a + (c + w) : add_assoc a c w
... = a + (w + c) : { add_comm c w }
... = a + w + c : symm (add_assoc a w c)
... = b + c : { Hw })
theorem le_antisym {a b : Nat} (H1 : a ≤ b) (H2 : b ≤ a) : a = b
:= obtain (w1 : Nat) (Hw1 : a + w1 = b), from (le_elim H1),
obtain (w2 : Nat) (Hw2 : b + w2 = a), from (le_elim H2),
let L1 : w1 + w2 = 0
:= add_injr (calc a + (w1 + w2) = a + w1 + w2 : { symm (add_assoc a w1 w2) }
... = b + w2 : { Hw1 }
... = a : Hw2
... = a + 0 : symm (add_zeror a)),
L2 : w1 = 0 := add_eqz L1
in calc a = a + 0 : symm (add_zeror a)
... = a + w1 : { symm L2 }
... = b : Hw1
theorem not_lt_0 (a : Nat) : ¬ a < 0
:= not_intro (λ H : a + 1 ≤ 0,
obtain (w : Nat) (Hw1 : a + 1 + w = 0), from (le_elim H),
absurd
(calc a + w + 1 = a + (w + 1) : add_assoc _ _ _
... = a + (1 + w) : { add_comm _ _ }
... = a + 1 + w : symm (add_assoc _ _ _)
... = 0 : Hw1)
(succ_nz (a + w)))
theorem lt_intro {a b c : Nat} (H : a + 1 + c = b) : a < b
:= le_intro H
theorem lt_elim {a b : Nat} (H : a < b) : ∃ x, a + 1 + x = b
:= le_elim H
theorem lt_le {a b : Nat} (H : a < b) : a ≤ b
:= obtain (w : Nat) (Hw : a + 1 + w = b), from (le_elim H),
le_intro (calc a + (1 + w) = a + 1 + w : symm (add_assoc _ _ _)
... = b : Hw)
theorem lt_ne {a b : Nat} (H : a < b) : a ≠ b
:= not_intro (λ H1 : a = b,
obtain (w : Nat) (Hw : a + 1 + w = b), from (lt_elim H),
absurd (calc w + 1 = 1 + w : add_comm _ _
... = 0 :
add_injr (calc b + (1 + w) = b + 1 + w : symm (add_assoc b 1 w)
... = a + 1 + w : { symm H1 }
... = b : Hw
... = b + 0 : symm (add_zeror b)))
(succ_nz w))
theorem lt_nrefl (a : Nat) : ¬ a < a
:= not_intro (λ H : a < a,
absurd (refl a) (lt_ne H))
theorem lt_trans {a b c : Nat} (H1 : a < b) (H2 : b < c) : a < c
:= obtain (w1 : Nat) (Hw1 : a + 1 + w1 = b), from (lt_elim H1),
obtain (w2 : Nat) (Hw2 : b + 1 + w2 = c), from (lt_elim H2),
lt_intro (calc a + 1 + (w1 + 1 + w2) = a + 1 + (w1 + (1 + w2)) : { add_assoc w1 1 w2 }
... = (a + 1 + w1) + (1 + w2) : symm (add_assoc _ _ _)
... = b + (1 + w2) : { Hw1 }
... = b + 1 + w2 : symm (add_assoc _ _ _)
... = c : Hw2)
theorem lt_le_trans {a b c : Nat} (H1 : a < b) (H2 : b ≤ c) : a < c
:= obtain (w1 : Nat) (Hw1 : a + 1 + w1 = b), from (lt_elim H1),
obtain (w2 : Nat) (Hw2 : b + w2 = c), from (le_elim H2),
lt_intro (calc a + 1 + (w1 + w2) = a + 1 + w1 + w2 : symm (add_assoc _ _ _)
... = b + w2 : { Hw1 }
... = c : Hw2)
theorem le_lt_trans {a b c : Nat} (H1 : a ≤ b) (H2 : b < c) : a < c
:= obtain (w1 : Nat) (Hw1 : a + w1 = b), from (le_elim H1),
obtain (w2 : Nat) (Hw2 : b + 1 + w2 = c), from (lt_elim H2),
lt_intro (calc a + 1 + (w1 + w2) = a + 1 + w1 + w2 : symm (add_assoc _ _ _)
... = a + (1 + w1) + w2 : { add_assoc a 1 w1 }
... = a + (w1 + 1) + w2 : { add_comm 1 w1 }
... = a + w1 + 1 + w2 : { symm (add_assoc a w1 1) }
... = b + 1 + w2 : { Hw1 }
... = c : Hw2)
theorem ne_lt_succ {a b : Nat} (H1 : a ≠ b) (H2 : a < b + 1) : a < b
:= obtain (w : Nat) (Hw : a + 1 + w = b + 1), from (lt_elim H2),
let L : a + w = b := add_injl (calc a + w + 1 = a + (w + 1) : add_assoc _ _ _
... = a + (1 + w) : { add_comm _ _ }
... = a + 1 + w : symm (add_assoc _ _ _)
... = b + 1 : Hw)
in discriminate (λ Hz : w = 0, absurd_elim (a < b) (calc a = a + 0 : symm (add_zeror _)
... = a + w : { symm Hz }
... = b : L)
H1)
(λ (p : Nat) (Hp : w = p + 1), lt_intro (calc a + 1 + p = a + (1 + p) : add_assoc _ _ _
... = a + (p + 1) : { add_comm _ _ }
... = a + w : { symm Hp }
... = b : L))
theorem strong_induction {P : Nat → Bool} (H : ∀ n, (∀ m, m < n → P m) → P n) : ∀ a, P a
:= take a,
let stronger : P a ∧ ∀ m, m < a → P m :=
-- we prove a stronger result by regular induction on a
induction_on a
(have P 0 ∧ ∀ m, m < 0 → P m :
let c2 : ∀ m, m < 0 → P m := λ (m : Nat) (Hlt : m < 0), absurd_elim (P m) Hlt (not_lt_0 m),
c1 : P 0 := H 0 c2
in and_intro c1 c2)
(λ (n : Nat) (iH : P n ∧ ∀ m, m < n → P m),
have P (n + 1) ∧ ∀ m, m < n + 1 → P m :
let iH1 : P n := and_eliml iH,
iH2 : ∀ m, m < n → P m := and_elimr iH,
c2 : ∀ m, m < n + 1 → P m := λ (m : Nat) (Hlt : m < n + 1),
or_elim (em (m = n))
(λ Heq : m = n, subst iH1 (symm Heq))
(λ Hne : m ≠ n, iH2 m (ne_lt_succ Hne Hlt)),
c1 : P (n + 1) := H (n + 1) c2
in and_intro c1 c2)
in and_eliml stronger
set_opaque add true
set_opaque mul true
set_opaque le true
set_opaque id true
set_opaque ge true
set_opaque lt true
set_opaque gt true
set_opaque id true
end

View file

@ -1,21 +0,0 @@
import tactic
using Nat
rewrite_set basic
add_rewrite add_zerol add_succl eq_id : basic
theorem add_assoc (a b c : Nat) : a + (b + c) = (a + b) + c
:= induction_on a
(have 0 + (b + c) = (0 + b) + c :
by simp basic)
(λ (n : Nat) (iH : n + (b + c) = (n + b) + c),
have (n + 1) + (b + c) = ((n + 1) + b) + c :
by simp basic)
exit
check add_zerol
check add_succl
check @eq_id
print environment 1

View file

@ -1,25 +0,0 @@
rewrite_set simple
add_rewrite and_truer and_truel and_falser and_falsel or_falsel : simple
(*
add_congr_theorem("simple", "and_congr")
add_congr_theorem("simple", "or_congr")
*)
variables a b c : Nat
(*
local t = parse_lean([[a = 1 ∧ (¬ b = 0 c ≠ 0 b + c > a)]])
local s, pr = simplify(t, "simple")
print(s)
print(pr)
print(get_environment():type_check(pr))
*)
exit
check @and_congr
check @or_congr
check @and_congrr
check @and_congrl
import if_then_else
check @if_congr

View file

@ -1,84 +0,0 @@
import macros
import tactic
using Nat
-- In this example, we prove two simple theorems about even/odd numbers.
-- First, we define the predicates even and odd.
definition even (a : Nat) := ∃ b, a = 2*b
definition odd (a : Nat) := ∃ b, a = 2*b + 1
-- Prove that the sum of two even numbers is even.
--
-- Notes: we use the macro
-- obtain [bindings] ',' 'from' [expr]_1 ',' [expr]_2
--
-- It is syntax sugar for existential elimination.
-- It expands to
--
-- exists_elim [expr]_1 (fun [binding], [expr]_2)
--
-- It is defined in the file macros.lua.
--
-- We also use the calculational proof style.
-- See doc/lean/calc.md for more information.
--
-- We use the first two obtain-expressions to extract the
-- witnesses w1 and w2 s.t. a = 2*w1 and b = 2*w2.
-- We can do that because H1 and H2 are evidence/proof for the
-- fact that 'a' and 'b' are even.
--
-- We use a calculational proof 'calc' expression to derive
-- the witness w1+w2 for the fact that a+b is also even.
-- That is, we provide a derivation showing that a+b = 2*(w1 + w2)
theorem EvenPlusEven {a b : Nat} (H1 : even a) (H2 : even b) : even (a + b)
:= obtain (w1 : Nat) (Hw1 : a = 2*w1), from H1,
obtain (w2 : Nat) (Hw2 : b = 2*w2), from H2,
exists_intro (w1 + w2)
(calc a + b = 2*w1 + b : { Hw1 }
... = 2*w1 + 2*w2 : { Hw2 }
... = 2*(w1 + w2) : symm (distributer 2 w1 w2))
exit
rewrite_set basic
add_rewrite distributer eq_id : basic
theorem EvenPlusEven2 {a b : Nat} (H1 : even a) (H2 : even b) : even (a + b)
:= obtain (w1 : Nat) (Hw1 : a = 2*w1), from H1,
obtain (w2 : Nat) (Hw2 : b = 2*w2), from H2,
exists_intro (w1 + w2)
(calc a + b = 2*(w1 + w2) : by simp basic)
-- In the following example, we omit the arguments for add_assoc, refl and distribute.
-- Lean can infer them automatically.
--
-- refl is the reflexivity proof. (refl a) is a proof that two
-- definitionally equal terms are indeed equal.
-- "definitionally equal" means that they have the same normal form.
-- We can also view it as "Proof by computation".
-- The normal form of (1+1), and 2*1 is 2.
--
-- Another remark: '2*w + 1 + 1' is not definitionally equal to '2*w + 2*1'.
-- The gotcha is that '2*w + 1 + 1' is actually '(2*w + 1) + 1' since +
-- is left associative. Moreover, Lean normalizer does not use
-- any theorems such as + associativity.
theorem OddPlusOne {a : Nat} (H : odd a) : even (a + 1)
:= obtain (w : Nat) (Hw : a = 2*w + 1), from H,
exists_intro (w + 1)
(calc a + 1 = 2*w + 1 + 1 : { Hw }
... = 2*w + (1 + 1) : add_assoc _ _ _
... = 2*w + 2*1 : refl _
... = 2*(w + 1) : symm (distributer _ _ _))
-- The following command displays the proof object produced by Lean after
-- expanding macros, and infering implicit/missing arguments.
print environment 2
-- By default, Lean does not display implicit arguments.
-- The following command will force it to display them.
set_option pp::implicit true
print environment 2
-- As an exercise, prove that the sum of two odd numbers is even,
-- and other similar theorems.

View file

@ -1,49 +0,0 @@
1- Coq expressivity + Z3 automation
2- "Real" proof objects
3- "Freedom to trust", semantic attachments
(speed) vs (trusted code base size)
Example: (by simp using t1 ... tn)
4- Extensible system (without compromising soundness)
5- Better support for "interactive proofs"
"Proofs with holes"
"Glue" different components
Script language
Extensibility
Proof maintenance
Unreliable automation produces "recipes" for reliable playback
6- Every component is exposed in the script language API
7- Lean is also a platform for implementing your own custom logic
Status
* Elaboration engine
- Type inference,
- Fill holes by solving typing constraints
- Higher-order unification
- Non-chronological backtracking
- ...
* Generic bottom-up simplifier
- Extend by providing theorems/axioms
- Support for dependent types
- Predictable/Reliable
* Tactic framework
- "Glue" different engines
- Standard combinators +
timeout + parallel solving
Next steps
* Generic tableaux like prover
- Extend by providing set of theorems that should be used as
alpha/beta/delta/gamma rules
- Non-chronological backtracking
- Callbacks: simplifier and decision procedures
* MCSat
- Model constructing satisfiability calculus.
New SMT engine
* Independent type/proof checker
- F-star
* Interface with existing tools: MiniSAT and Z3

View file

@ -1,628 +0,0 @@
import macros
universe U ≥ 1
definition TypeU := (Type U)
variable Bool : Type
-- The following builtin declarations can be removed as soon as Lean supports inductive datatypes and match expressions
builtin true : Bool
builtin false : Bool
definition not (a : Bool) := a → false
notation 40 ¬ _ : not
definition or (a b : Bool) := ¬ a → b
infixr 30 || : or
infixr 30 \/ : or
infixr 30 : or
definition and (a b : Bool) := ¬ (a → ¬ b)
infixr 35 && : and
infixr 35 /\ : and
infixr 35 ∧ : and
definition implies (a b : Bool) := a → b
builtin eq {A : (Type U)} (a b : A) : Bool
infix 50 = : eq
definition neq {A : TypeU} (a b : A) := ¬ (a = b)
infix 50 ≠ : neq
definition iff (a b : Bool) := a = b
infixr 25 <-> : iff
infixr 25 ↔ : iff
-- The Lean parser has special treatment for the constant exists.
-- It allows us to write
-- exists x y : A, P x y and ∃ x y : A, P x y
-- as syntax sugar for
-- exists A (fun x : A, exists A (fun y : A, P x y))
-- That is, it treats the exists as an extra binder such as fun and forall.
-- It also provides an alias (Exists) that should be used when we
-- want to treat exists as a constant.
definition Exists (A : TypeU) (P : A → Bool) := ¬ (∀ x, ¬ (P x))
definition nonempty (A : TypeU) := ∃ x : A, true
-- If we have an element of type A, then A is nonempty
theorem nonempty_intro {A : TypeU} (a : A) : nonempty A
:= assume H : (∀ x, ¬ true), (H a)
theorem em (a : Bool) : a ¬ a
:= assume Hna : ¬ a, Hna
axiom case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a
axiom refl {A : TypeU} (a : A) : a = a
axiom subst {A : TypeU} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a = b) : P b
-- Function extensionality
axiom funext {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (H : ∀ x : A, f x = g x) : f = g
-- Forall extensionality
axiom allext {A : TypeU} {B C : A → Bool} (H : ∀ x : A, B x = C x) : (∀ x : A, B x) = (∀ x : A, C x)
-- Epsilon (Hilbert's operator)
variable eps {A : TypeU} (H : nonempty A) (P : A → Bool) : A
alias ε : eps
axiom eps_ax {A : TypeU} (H : nonempty A) {P : A → Bool} (a : A) : P a → P (ε H P)
-- Proof irrelevance
axiom proof_irrel {a : Bool} (H1 H2 : a) : H1 = H2
theorem eps_th {A : TypeU} {P : A → Bool} (a : A) : P a → P (ε (nonempty_intro a) P)
:= assume H : P a, @eps_ax A (nonempty_intro a) P a H
-- Alias for subst where we can provide P explicitly, but keep A,a,b implicit
theorem substp {A : TypeU} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a = b) : P b
:= subst H1 H2
-- We will mark not as opaque later
theorem not_intro {a : Bool} (H : a → false) : ¬ a
:= H
theorem eta {A : TypeU} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) = f
:= funext (λ x : A, refl (f x))
-- create default rewrite rule set
(* mk_rewrite_rule_set() *)
theorem trivial : true
:= refl true
theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false
:= H2 H1
theorem eqmp {a b : Bool} (H1 : a = b) (H2 : a) : b
:= subst H2 H1
infixl 100 <| : eqmp
infixl 100 ◂ : eqmp
theorem boolcomplete (a : Bool) : a = true a = false
:= case (λ x, x = true x = false) trivial trivial a
theorem false_elim (a : Bool) (H : false) : a
:= case (λ x, x) trivial H a
theorem imp_trans {a b c : Bool} (H1 : a → b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 Ha)
theorem imp_eq_trans {a b c : Bool} (H1 : a → b) (H2 : b = c) : a → c
:= assume Ha, H2 ◂ (H1 Ha)
theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 ◂ Ha)
theorem not_not_eq (a : Bool) : ¬ ¬ a ↔ a
:= case (λ x, ¬ ¬ x ↔ x) trivial trivial a
theorem not_not_elim {a : Bool} (H : ¬ ¬ a) : a
:= (not_not_eq a) ◂ H
theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a
:= assume Ha : a, absurd (H1 Ha) H2
theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a
:= assume Hnb : ¬ b, mt H Hnb
theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b
:= false_elim b (absurd H1 H2)
theorem not_imp_eliml {a b : Bool} (Hnab : ¬ (a → b)) : a
:= not_not_elim
(have ¬ ¬ a :
assume Hna : ¬ a, absurd (assume Ha : a, absurd_elim b Ha Hna)
Hnab)
theorem not_imp_elimr {a b : Bool} (H : ¬ (a → b)) : ¬ b
:= assume Hb : b, absurd (assume Ha : a, Hb)
H
theorem resolve1 {a b : Bool} (H1 : a b) (H2 : ¬ a) : b
:= H1 H2
-- Recall that and is defined as ¬ (a → ¬ b)
theorem and_intro {a b : Bool} (H1 : a) (H2 : b) : a ∧ b
:= assume H : a → ¬ b, absurd H2 (H H1)
theorem and_eliml {a b : Bool} (H : a ∧ b) : a
:= not_imp_eliml H
theorem and_elimr {a b : Bool} (H : a ∧ b) : b
:= not_not_elim (not_imp_elimr H)
-- Recall that or is defined as ¬ a → b
theorem or_introl {a : Bool} (H : a) (b : Bool) : a b
:= assume H1 : ¬ a, absurd_elim b H H1
theorem or_intror {b : Bool} (a : Bool) (H : b) : a b
:= assume H1 : ¬ a, H
theorem or_elim {a b c : Bool} (H1 : a b) (H2 : a → c) (H3 : b → c) : c
:= not_not_elim
(assume H : ¬ c,
absurd (have c : H3 (have b : resolve1 H1 (have ¬ a : (mt (assume Ha : a, H2 Ha) H))))
H)
theorem refute {a : Bool} (H : ¬ a → false) : a
:= or_elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false_elim a (H H1))
theorem symm {A : TypeU} {a b : A} (H : a = b) : b = a
:= subst (refl a) H
theorem eqmpr {a b : Bool} (H1 : a = b) (H2 : b) : a
:= (symm H1) ◂ H2
theorem trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
:= subst H1 H2
theorem ne_symm {A : TypeU} {a b : A} (H : a ≠ b) : b ≠ a
:= assume H1 : b = a, H (symm H1)
theorem eq_ne_trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c
:= subst H2 (symm H1)
theorem ne_eq_trans {A : TypeU} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c
:= subst H1 H2
theorem eqt_elim {a : Bool} (H : a = true) : a
:= (symm H) ◂ trivial
theorem eqf_elim {a : Bool} (H : a = false) : ¬ a
:= not_intro (λ Ha : a, H ◂ Ha)
theorem congr1 {A B : TypeU} {f g : A → B} (a : A) (H : f = g) : f a = g a
:= substp (fun h : A → B, f a = h a) (refl (f a)) H
theorem congr2 {A B : TypeU} {a b : A} (f : A → B) (H : a = b) : f a = f b
:= substp (fun x : A, f a = f x) (refl (f a)) H
theorem congr {A B : TypeU} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b
:= subst (congr2 f H2) (congr1 b H1)
-- Recall that exists is defined as ¬ ∀ x : A, ¬ P x
theorem exists_elim {A : TypeU} {P : A → Bool} {B : Bool} (H1 : Exists A P) (H2 : ∀ (a : A) (H : P a), B) : B
:= refute (λ R : ¬ B,
absurd (take a : A, mt (assume H : P a, H2 a H) R)
H1)
theorem exists_intro {A : TypeU} {P : A → Bool} (a : A) (H : P a) : Exists A P
:= assume H1 : (∀ x : A, ¬ P x),
absurd H (H1 a)
theorem nonempty_elim {A : TypeU} (H1 : nonempty A) {B : Bool} (H2 : A → B) : B
:= obtain (w : A) (Hw : true), from H1,
H2 w
theorem nonempty_ex_intro {A : TypeU} {P : A → Bool} (H : ∃ x, P x) : nonempty A
:= obtain (w : A) (Hw : P w), from H,
exists_intro w trivial
theorem exists_to_eps {A : TypeU} {P : A → Bool} (H : ∃ x, P x) : P (ε (nonempty_ex_intro H) P)
:= obtain (w : A) (Hw : P w), from H,
eps_ax (nonempty_ex_intro H) w Hw
theorem axiom_of_choice {A : TypeU} {B : A → TypeU} {R : ∀ x : A, B x → Bool} (H : ∀ x, ∃ y, R x y) : ∃ f, ∀ x, R x (f x)
:= exists_intro
(λ x, ε (nonempty_ex_intro (H x)) (λ y, R x y)) -- witness for f
(λ x, exists_to_eps (H x)) -- proof that witness satisfies ∀ x, R x (f x)
theorem boolext {a b : Bool} (Hab : a → b) (Hba : b → a) : a = b
:= or_elim (boolcomplete a)
(λ Hat : a = true, or_elim (boolcomplete b)
(λ Hbt : b = true, trans Hat (symm Hbt))
(λ Hbf : b = false, false_elim (a = b) (subst (Hab (eqt_elim Hat)) Hbf)))
(λ Haf : a = false, or_elim (boolcomplete b)
(λ Hbt : b = true, false_elim (a = b) (subst (Hba (eqt_elim Hbt)) Haf))
(λ Hbf : b = false, trans Haf (symm Hbf)))
theorem iff_intro {a b : Bool} (Hab : a → b) (Hba : b → a) : a ↔ b
:= boolext Hab Hba
theorem iff_eliml {a b : Bool} (H : a ↔ b) : a → b
:= (λ Ha : a, eqmp H Ha)
theorem iff_elimr {a b : Bool} (H : a ↔ b) : b → a
:= (λ Hb : b, eqmpr H Hb)
theorem skolem_th {A : TypeU} {B : A → TypeU} {P : ∀ x : A, B x → Bool} :
(∀ x, ∃ y, P x y) ↔ ∃ f, (∀ x, P x (f x))
:= iff_intro
(λ H : (∀ x, ∃ y, P x y), axiom_of_choice H)
(λ H : (∃ f, (∀ x, P x (f x))),
take x, obtain (fw : ∀ x, B x) (Hw : ∀ x, P x (fw x)), from H,
exists_intro (fw x) (Hw x))
theorem eqt_intro {a : Bool} (H : a) : a = true
:= boolext (assume H1 : a, trivial)
(assume H2 : true, H)
theorem eqf_intro {a : Bool} (H : ¬ a) : a = false
:= boolext (assume H1 : a, absurd H1 H)
(assume H2 : false, false_elim a H2)
theorem neq_elim {A : TypeU} {a b : A} (H : a ≠ b) : a = b ↔ false
:= eqf_intro H
theorem eq_id {A : TypeU} (a : A) : (a = a) ↔ true
:= eqt_intro (refl a)
theorem iff_id (a : Bool) : (a ↔ a) ↔ true
:= eqt_intro (refl a)
theorem or_comm (a b : Bool) : (a b) = (b a)
:= boolext (assume H, or_elim H (λ H1, or_intror b H1) (λ H2, or_introl H2 a))
(assume H, or_elim H (λ H1, or_intror a H1) (λ H2, or_introl H2 b))
theorem or_assoc (a b c : Bool) : (a b) c ↔ a (b c)
:= boolext (assume H : (a b) c,
or_elim H (λ H1 : a b, or_elim H1 (λ Ha : a, or_introl Ha (b c))
(λ Hb : b, or_intror a (or_introl Hb c)))
(λ Hc : c, or_intror a (or_intror b Hc)))
(assume H : a (b c),
or_elim H (λ Ha : a, (or_introl (or_introl Ha b) c))
(λ H1 : b c, or_elim H1 (λ Hb : b, or_introl (or_intror a Hb) c)
(λ Hc : c, or_intror (a b) Hc)))
theorem or_id (a : Bool) : a a ↔ a
:= boolext (assume H, or_elim H (λ H1, H1) (λ H2, H2))
(assume H, or_introl H a)
theorem or_falsel (a : Bool) : a false ↔ a
:= boolext (assume H, or_elim H (λ H1, H1) (λ H2, false_elim a H2))
(assume H, or_introl H false)
theorem or_falser (a : Bool) : false a ↔ a
:= trans (or_comm false a) (or_falsel a)
theorem or_truel (a : Bool) : true a ↔ true
:= eqt_intro (case (λ x : Bool, true x) trivial trivial a)
theorem or_truer (a : Bool) : a true ↔ true
:= trans (or_comm a true) (or_truel a)
theorem or_tauto (a : Bool) : a ¬ a ↔ true
:= eqt_intro (em a)
theorem and_comm (a b : Bool) : a ∧ b ↔ b ∧ a
:= boolext (assume H, and_intro (and_elimr H) (and_eliml H))
(assume H, and_intro (and_elimr H) (and_eliml H))
theorem and_id (a : Bool) : a ∧ a ↔ a
:= boolext (assume H, and_eliml H)
(assume H, and_intro H H)
theorem and_assoc (a b c : Bool) : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c)
:= boolext (assume H, and_intro (and_eliml (and_eliml H)) (and_intro (and_elimr (and_eliml H)) (and_elimr H)))
(assume H, and_intro (and_intro (and_eliml H) (and_eliml (and_elimr H))) (and_elimr (and_elimr H)))
theorem and_truer (a : Bool) : a ∧ true ↔ a
:= boolext (assume H : a ∧ true, and_eliml H)
(assume H : a, and_intro H trivial)
theorem and_truel (a : Bool) : true ∧ a ↔ a
:= trans (and_comm true a) (and_truer a)
theorem and_falsel (a : Bool) : a ∧ false ↔ false
:= boolext (assume H, and_elimr H)
(assume H, false_elim (a ∧ false) H)
theorem and_falser (a : Bool) : false ∧ a ↔ false
:= trans (and_comm false a) (and_falsel a)
theorem and_absurd (a : Bool) : a ∧ ¬ a ↔ false
:= boolext (assume H, absurd (and_eliml H) (and_elimr H))
(assume H, false_elim (a ∧ ¬ a) H)
theorem imp_truer (a : Bool) : (a → true) ↔ true
:= case (λ x, (x → true) ↔ true) trivial trivial a
theorem imp_truel (a : Bool) : (true → a) ↔ a
:= case (λ x, (true → x) ↔ x) trivial trivial a
theorem imp_falser (a : Bool) : (a → false) ↔ ¬ a
:= refl _
theorem imp_falsel (a : Bool) : (false → a) ↔ true
:= case (λ x, (false → x) ↔ true) trivial trivial a
theorem imp_or (a b : Bool) : (a → b) ↔ ¬ a b
:= iff_intro
(assume H : a → b,
(or_elim (em a)
(λ Ha : a, or_intror (¬ a) (H Ha))
(λ Hna : ¬ a, or_introl Hna b)))
(assume H : ¬ a b,
assume Ha : a,
resolve1 H ((symm (not_not_eq a)) ◂ Ha))
theorem not_true : ¬ true ↔ false
:= trivial
theorem not_false : ¬ false ↔ true
:= trivial
theorem not_neq {A : TypeU} (a b : A) : ¬ (a ≠ b) ↔ a = b
:= not_not_eq (a = b)
theorem not_neq_elim {A : TypeU} {a b : A} (H : ¬ (a ≠ b)) : a = b
:= (not_neq a b) ◂ H
theorem not_and (a b : Bool) : ¬ (a ∧ b) ↔ ¬ a ¬ b
:= case (λ x, ¬ (x ∧ b) ↔ ¬ x ¬ b)
(case (λ y, ¬ (true ∧ y) ↔ ¬ true ¬ y) trivial trivial b)
(case (λ y, ¬ (false ∧ y) ↔ ¬ false ¬ y) trivial trivial b)
a
theorem not_and_elim {a b : Bool} (H : ¬ (a ∧ b)) : ¬ a ¬ b
:= (not_and a b) ◂ H
theorem not_or (a b : Bool) : ¬ (a b) ↔ ¬ a ∧ ¬ b
:= case (λ x, ¬ (x b) ↔ ¬ x ∧ ¬ b)
(case (λ y, ¬ (true y) ↔ ¬ true ∧ ¬ y) trivial trivial b)
(case (λ y, ¬ (false y) ↔ ¬ false ∧ ¬ y) trivial trivial b)
a
theorem not_or_elim {a b : Bool} (H : ¬ (a b)) : ¬ a ∧ ¬ b
:= (not_or a b) ◂ H
theorem not_iff (a b : Bool) : ¬ (a ↔ b) ↔ (¬ a ↔ b)
:= case (λ x, ¬ (x ↔ b) ↔ ((¬ x) ↔ b))
(case (λ y, ¬ (true ↔ y) ↔ ((¬ true) ↔ y)) trivial trivial b)
(case (λ y, ¬ (false ↔ y) ↔ ((¬ false) ↔ y)) trivial trivial b)
a
theorem not_iff_elim {a b : Bool} (H : ¬ (a ↔ b)) : (¬ a) ↔ b
:= (not_iff a b) ◂ H
theorem not_implies (a b : Bool) : ¬ (a → b) ↔ a ∧ ¬ b
:= case (λ x, ¬ (x → b) ↔ x ∧ ¬ b)
(case (λ y, ¬ (true → y) ↔ true ∧ ¬ y) trivial trivial b)
(case (λ y, ¬ (false → y) ↔ false ∧ ¬ y) trivial trivial b)
a
theorem not_implies_elim {a b : Bool} (H : ¬ (a → b)) : a ∧ ¬ b
:= (not_implies a b) ◂ H
theorem not_congr {a b : Bool} (H : a ↔ b) : ¬ a ↔ ¬ b
:= congr2 not H
theorem exists_rem {A : TypeU} (H : nonempty A) (p : Bool) : (∃ x : A, p) ↔ p
:= iff_intro
(assume Hl : (∃ x : A, p),
obtain (w : A) (Hw : p), from Hl,
Hw)
(assume Hr : p,
nonempty_elim H (λ w, exists_intro w Hr))
theorem forall_rem {A : TypeU} (H : nonempty A) (p : Bool) : (∀ x : A, p) ↔ p
:= iff_intro
(assume Hl : (∀ x : A, p),
nonempty_elim H (λ w, Hl w))
(assume Hr : p,
take x, Hr)
theorem eq_exists_intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x ↔ Q x) : (∃ x : A, P x) ↔ (∃ x : A, Q x)
:= congr2 (Exists A) (funext H)
theorem not_forall (A : (Type U)) (P : A → Bool) : ¬ (∀ x : A, P x) ↔ (∃ x : A, ¬ P x)
:= calc (¬ ∀ x : A, P x) = ¬ ∀ x : A, ¬ ¬ P x : not_congr (allext (λ x : A, symm (not_not_eq (P x))))
... = ∃ x : A, ¬ P x : refl (∃ x : A, ¬ P x)
theorem not_forall_elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x
:= (not_forall A P) ◂ H
theorem not_exists (A : (Type U)) (P : A → Bool) : ¬ (∃ x : A, P x) ↔ (∀ x : A, ¬ P x)
:= calc (¬ ∃ x : A, P x) = ¬ ¬ ∀ x : A, ¬ P x : refl (¬ ∃ x : A, P x)
... = ∀ x : A, ¬ P x : not_not_eq (∀ x : A, ¬ P x)
theorem not_exists_elim {A : (Type U)} {P : A → Bool} (H : ¬ ∃ x : A, P x) : ∀ x : A, ¬ P x
:= (not_exists A P) ◂ H
theorem exists_unfold1 {A : TypeU} {P : A → Bool} (a : A) (H : ∃ x : A, P x) : P a (∃ x : A, x ≠ a ∧ P x)
:= exists_elim H
(λ (w : A) (H1 : P w),
or_elim (em (w = a))
(λ Heq : w = a, or_introl (subst H1 Heq) (∃ x : A, x ≠ a ∧ P x))
(λ Hne : w ≠ a, or_intror (P a) (exists_intro w (and_intro Hne H1))))
theorem exists_unfold2 {A : TypeU} {P : A → Bool} (a : A) (H : P a (∃ x : A, x ≠ a ∧ P x)) : ∃ x : A, P x
:= or_elim H
(λ H1 : P a, exists_intro a H1)
(λ H2 : (∃ x : A, x ≠ a ∧ P x),
exists_elim H2
(λ (w : A) (Hw : w ≠ a ∧ P w),
exists_intro w (and_elimr Hw)))
theorem exists_unfold {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) ↔ (P a (∃ x : A, x ≠ a ∧ P x))
:= boolext (assume H : (∃ x : A, P x), exists_unfold1 a H)
(assume H : (P a (∃ x : A, x ≠ a ∧ P x)), exists_unfold2 a H)
-- Remark: ordered rewriting + assoc + comm + left_comm sorts a term lexicographically
theorem left_comm {A : TypeU} {R : A -> A -> A} (comm : ∀ x y, R x y = R y x) (assoc : ∀ x y z, R (R x y) z = R x (R y z)) :
∀ x y z, R x (R y z) = R y (R x z)
:= take x y z, calc R x (R y z) = R (R x y) z : symm (assoc x y z)
... = R (R y x) z : { comm x y }
... = R y (R x z) : assoc y x z
theorem and_left_comm (a b c : Bool) : a ∧ (b ∧ c) ↔ b ∧ (a ∧ c)
:= left_comm and_comm and_assoc a b c
theorem or_left_comm (a b c : Bool) : a (b c) ↔ b (a c)
:= left_comm or_comm or_assoc a b c
-- Congruence theorems for contextual simplification
-- Simplify a → b, by first simplifying a to c using the fact that ¬ b is true, and then
-- b to d using the fact that c is true
theorem imp_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_c : c), b = d) : (a → b) = (c → d)
:= or_elim (em b)
(λ H_b : b,
or_elim (em c)
(λ H_c : c,
calc (a → b) = (a → true) : { eqt_intro H_b }
... = true : imp_truer a
... = (c → true) : symm (imp_truer c)
... = (c → b) : { symm (eqt_intro H_b) }
... = (c → d) : { H_bd H_c })
(λ H_nc : ¬ c,
calc (a → b) = (a → true) : { eqt_intro H_b }
... = true : imp_truer a
... = (false → d) : symm (imp_falsel d)
... = (c → d) : { symm (eqf_intro H_nc) }))
(λ H_nb : ¬ b,
or_elim (em c)
(λ H_c : c,
calc (a → b) = (c → b) : { H_ac H_nb }
... = (c → d) : { H_bd H_c })
(λ H_nc : ¬ c,
calc (a → b) = (c → b) : { H_ac H_nb }
... = (false → b) : { eqf_intro H_nc }
... = true : imp_falsel b
... = (false → d) : symm (imp_falsel d)
... = (c → d) : { symm (eqf_intro H_nc) }))
-- Simplify a → b, by first simplifying b to d using the fact that a is true, and then
-- b to d using the fact that ¬ d is true.
-- This kind of congruence seems to be useful in very rare cases.
theorem imp_congrl {a b c d : Bool} (H_bd : ∀ (H_a : a), b = d) (H_ac : ∀ (H_nd : ¬ d), a = c) : (a → b) = (c → d)
:= or_elim (em a)
(λ H_a : a,
or_elim (em d)
(λ H_d : d,
calc (a → b) = (a → d) : { H_bd H_a }
... = (a → true) : { eqt_intro H_d }
... = true : imp_truer a
... = (c → true) : symm (imp_truer c)
... = (c → d) : { symm (eqt_intro H_d) })
(λ H_nd : ¬ d,
calc (a → b) = (c → b) : { H_ac H_nd }
... = (c → d) : { H_bd H_a }))
(λ H_na : ¬ a,
or_elim (em d)
(λ H_d : d,
calc (a → b) = (false → b) : { eqf_intro H_na }
... = true : imp_falsel b
... = (c → true) : symm (imp_truer c)
... = (c → d) : { symm (eqt_intro H_d) })
(λ H_nd : ¬ d,
calc (a → b) = (false → b) : { eqf_intro H_na }
... = true : imp_falsel b
... = (false → d) : symm (imp_falsel d)
... = (a → d) : { symm (eqf_intro H_na) }
... = (c → d) : { H_ac H_nd }))
-- (Common case) simplify a to c, and then b to d using the fact that c is true
theorem imp_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : (a → b) = (c → d)
:= imp_congrr (λ H, H_ac) H_bd
-- In the following theorems we are using the fact that a b is defined as ¬ a → b
theorem or_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b ↔ c d
:= imp_congrr (λ H_nb : ¬ b, congr2 not (H_ac H_nb)) H_bd
theorem or_congrl {a b c d : Bool} (H_bd : ∀ (H_na : ¬ a), b = d) (H_ac : ∀ (H_nd : ¬ d), a = c) : a b ↔ c d
:= imp_congrl H_bd (λ H_nd : ¬ d, congr2 not (H_ac H_nd))
-- (Common case) simplify a to c, and then b to d using the fact that ¬ c is true
theorem or_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b ↔ c d
:= or_congrr (λ H, H_ac) H_bd
-- In the following theorems we are using the fact hat a ∧ b is defined as ¬ (a → ¬ b)
theorem and_congrr {a b c d : Bool} (H_ac : ∀ (H_b : b), a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ↔ c ∧ d
:= congr2 not (imp_congrr (λ (H_nnb : ¬ ¬ b), H_ac (not_not_elim H_nnb)) (λ H_c : c, congr2 not (H_bd H_c)))
theorem and_congrl {a b c d : Bool} (H_bd : ∀ (H_a : a), b = d) (H_ac : ∀ (H_d : d), a = c) : a ∧ b ↔ c ∧ d
:= congr2 not (imp_congrl (λ H_a : a, congr2 not (H_bd H_a)) (λ (H_nnd : ¬ ¬ d), H_ac (not_not_elim H_nnd)))
-- (Common case) simplify a to c, and then b to d using the fact that c is true
theorem and_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ↔ c ∧ d
:= and_congrr (λ H, H_ac) H_bd
theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, p φ x) = (p ∀ x, φ x)
:= boolext
(assume H : (∀ x, p φ x),
or_elim (em p)
(λ Hp : p, or_introl Hp (∀ x, φ x))
(λ Hnp : ¬ p, or_intror p (take x,
resolve1 (H x) Hnp)))
(assume H : (p ∀ x, φ x),
take x,
or_elim H
(λ H1 : p, or_introl H1 (φ x))
(λ H2 : (∀ x, φ x), or_intror p (H2 x)))
theorem forall_or_distributel {A : Type} (p : Bool) (φ : A → Bool) : (∀ x, φ x p) = ((∀ x, φ x) p)
:= calc (∀ x, φ x p) = (∀ x, p φ x) : allext (λ x, or_comm (φ x) p)
... = (p ∀ x, φ x) : forall_or_distributer p φ
... = ((∀ x, φ x) p) : or_comm p (∀ x, φ x)
theorem forall_and_distribute {A : TypeU} (φ ψ : A → Bool) : (∀ x, φ x ∧ ψ x) ↔ (∀ x, φ x) ∧ (∀ x, ψ x)
:= boolext
(assume H : (∀ x, φ x ∧ ψ x),
and_intro (take x, and_eliml (H x)) (take x, and_elimr (H x)))
(assume H : (∀ x, φ x) ∧ (∀ x, ψ x),
take x, and_intro (and_eliml H x) (and_elimr H x))
theorem exists_and_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, p ∧ φ x) ↔ p ∧ ∃ x, φ x
:= boolext
(assume H : (∃ x, p ∧ φ x),
obtain (w : A) (Hw : p ∧ φ w), from H,
and_intro (and_eliml Hw) (exists_intro w (and_elimr Hw)))
(assume H : (p ∧ ∃ x, φ x),
obtain (w : A) (Hw : φ w), from (and_elimr H),
exists_intro w (and_intro (and_eliml H) Hw))
theorem exists_and_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, φ x ∧ p) ↔ (∃ x, φ x) ∧ p
:= calc (∃ x, φ x ∧ p) = (∃ x, p ∧ φ x) : eq_exists_intro (λ x, and_comm (φ x) p)
... = (p ∧ (∃ x, φ x)) : exists_and_distributer p φ
... = ((∃ x, φ x) ∧ p) : and_comm p (∃ x, φ x)
theorem exists_or_distribute {A : TypeU} (φ ψ : A → Bool) : (∃ x, φ x ψ x) ↔ (∃ x, φ x) (∃ x, ψ x)
:= boolext
(assume H : (∃ x, φ x ψ x),
obtain (w : A) (Hw : φ w ψ w), from H,
or_elim Hw
(λ Hw1 : φ w, or_introl (exists_intro w Hw1) (∃ x, ψ x))
(λ Hw2 : ψ w, or_intror (∃ x, φ x) (exists_intro w Hw2)))
(assume H : (∃ x, φ x) (∃ x, ψ x),
or_elim H
(λ H1 : (∃ x, φ x),
obtain (w : A) (Hw : φ w), from H1,
exists_intro w (or_introl Hw (ψ w)))
(λ H2 : (∃ x, ψ x),
obtain (w : A) (Hw : ψ w), from H2,
exists_intro w (or_intror (φ w) Hw)))
theorem exists_imp_distribute {A : TypeU} (φ ψ : A → Bool) : (∃ x, φ x → ψ x) ↔ ((∀ x, φ x) → (∃ x, ψ x))
:= calc (∃ x, φ x → ψ x) = (∃ x, ¬ φ x ψ x) : eq_exists_intro (λ x, imp_or (φ x) (ψ x))
... = (∃ x, ¬ φ x) (∃ x, ψ x) : exists_or_distribute _ _
... = ¬ (∀ x, φ x) (∃ x, ψ x) : { symm (not_forall A φ) }
... = (∀ x, φ x) → (∃ x, ψ x) : symm (imp_or _ _)
set_opaque exists true
set_opaque not true
set_opaque or true
set_opaque and true
set_opaque implies true

View file

@ -1,36 +0,0 @@
rewrite_set simple
add_rewrite Nat::add_comm Nat::add_left_comm Nat::add_assoc Nat::add_zeror : simple
variables a b c : Nat
(*
function indent(s)
for i = 1, s:depth()-1 do
io.write(" ")
end
end
local m = simplifier_monitor(function(s, e)
indent(s)
print("Visit, depth: " .. s:depth() .. ", " .. tostring(e))
end,
function(s, e, new_e, pr)
indent(s)
print("Step: " .. tostring(e) .. " ===> " .. tostring(new_e))
end,
function(s, e, new_e, ceq, ceq_id)
-- if ceq_id == name("Nat", "add_assoc") then
indent(s)
print("Rewrite using: " .. tostring(ceq_id))
indent(s)
print(" " .. tostring(e) .. " ===> " .. tostring(new_e))
-- end
end
)
local s = simplifier("simple", options(), m)
local t = parse_lean('a + (b + 0) + a')
print(t)
print("=====>")
local t2, pr = s(t)
print(t2)
print(pr)
get_environment():type_check(pr)
*)

View file

@ -1,59 +0,0 @@
import tactic
using Nat
rewrite_set basic
add_rewrite add_zerol add_succl eq_id : basic
theorem add_assoc (a b c : Nat) : (a + b) + c = a + (b + c)
:= induction_on a
(have (0 + b) + c = 0 + (b + c) :
by simp basic)
(λ (n : Nat) (iH : (n + b) + c = n + (b + c)),
have ((n + 1) + b) + c = (n + 1) + (b + c) :
by simp basic)
check add_zerol
check add_succl
check @eq_id
-- print environment 1
add_rewrite add_assoc add_comm mul_zeror mul_zerol mul_succr : basic
theorem mul_succl_1 (a b : Nat) : (a + 1) * b = a * b + b
:= induction_on b
(have (a + 1) * 0 = a * 0 + 0 :
by simp basic)
(λ (n : Nat) (iH : (a + 1) * n = a * n + n),
have (a + 1) * (n + 1) = a * (n + 1) + (n + 1) :
by simp basic)
exit
rewrite_set first_pass
add_rewrite mul_succr eq_id : first_pass
rewrite_set sort_add
add_rewrite add_assoc add_comm add_left_comm eq_id : sort_add
theorem mul_succl_2 (a b : Nat) : (a + 1) * b = a * b + b
:= induction_on b
(have (a + 1) * 0 = a * 0 + 0 :
by simp basic)
(λ (n : Nat) (iH : (a + 1) * n = a * n + n),
have (a + 1) * (n + 1) = a * (n + 1) + (n + 1) :
by Then (simp first_pass) (simp sort_add))
exit
theorem mul_succl_3 (a b : Nat) : (a + 1) * b = a * b + b
:= induction_on b
(have (a + 1) * 0 = a * 0 + 0 :
by simp basic)
(λ (n : Nat) (iH : (a + 1) * n = a * n + n),
calc (a + 1) * (n + 1) = (a * n + n) + (a + 1) : by simp first_pass
... = (a * n + a) + (n + 1) : by simp sort_add
... = a * (n + 1) + (n + 1) : by simp first_pass)

View file

@ -1,17 +0,0 @@
rewrite_set NNF
add_rewrite not_not_eq not_true not_false not_neq not_and not_or not_iff not_implies not_forall
not_exists forall_and_distribute exists_and_distributer exists_and_distributel : NNF
variable p : Nat → Nat → Bool
variable f : Nat → Nat
variable g : Nat → Nat → Nat
(*
local t1 = parse_lean('¬ ∀ x, (∃ y, p x y p (f x) (f y)) f 0 = 1')
local t2, pr = simplify(t1, "NNF")
print(t1)
print("====>")
print(t2)
-- print(pr)
get_environment():type_check(pr)
*)

View file

@ -1,20 +0,0 @@
import macros
scope
variable A : Type
variable R : A → A → Bool
axiom Symm {x y : A} : R x y → R y x
axiom Trans {x y z : A} : R x y → R y z → R x z
theorem ReflIf (Linked : ∀ x, ∃ y, R x y) : ∀ x, R x x :=
take x, obtain (w : A) (Hw : R x w), from Linked x,
let lemma1 : R w x := Symm Hw
in Trans Hw lemma1
theorem ReflIf2 (Linked : ∀ x, ∃ y, R x y) : ∀ x, R x x :=
λ x, exists_elim (Linked x)
(λ w Hw,
Trans Hw (Symm Hw))
end
print environment 1

View file

@ -1,33 +0,0 @@
import macros
definition Set (A : Type) : Type := A → Bool
definition element {A : Type} (x : A) (s : Set A) := s x
infix 60 ∈ : element
definition subset {A : Type} (s1 : Set A) (s2 : Set A) := ∀ x, x ∈ s1 → x ∈ s2
infix 50 ⊆ : subset
theorem subset_trans {A : Type} {s1 s2 s3 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3) : s1 ⊆ s3
:= take x : A,
assume Hin : x ∈ s1,
have x ∈ s3 :
let L1 : x ∈ s2 := H1 x Hin
in H2 x L1
theorem subset_ext {A : Type} {s1 s2 : Set A} (H : ∀ x, x ∈ s1 = x ∈ s2) : s1 = s2
:= funext H
theorem subset_antisym {A : Type} {s1 s2 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s1) : s1 = s2
:= subset_ext (have (∀ x, x ∈ s1 = x ∈ s2) :
take x, have x ∈ s1 = x ∈ s2 :
iff_intro (have x ∈ s1 → x ∈ s2 : H1 x)
(have x ∈ s2 → x ∈ s1 : H2 x))
exit
theorem subset_trans2 {A : Type} {s1 s2 s3 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3) : s1 ⊆ s3
:= λ x Hin, H2 x (H1 x Hin)
theorem subset_antisym2 {A : Type} {s1 s2 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s1) : s1 = s2
:= funext (λ x, iff_intro (H1 x) (H2 x))

View file

@ -1,9 +0,0 @@
variable q : Nat → Bool
variable f : Nat → Nat → Nat
theorem T1 (a b : Nat) (H1 : a = b) (H2 : q (f (f a a) (f a a))) : q (f (f a b) (f a a))
:= subst H2 H1
check @subst
set_option pp::implicit true
print environment 1

View file

@ -1,38 +0,0 @@
import macros
definition reflexive {A : TypeU} (R : A → A → Bool) := ∀ x, R x x
definition transitive {A : TypeU} (R : A → A → Bool) := ∀ x y z, R x y → R y z → R x z
definition subrelation {A : TypeU} (R1 : A → A → Bool) (R2 : A → A → Bool) := ∀ x y, R1 x y → R2 x y
infix 50 ⊆ : subrelation
-- (tcls R) is the transitive closure of relation R
-- We define it as the intersection of all transitive relations containing R
definition tcls {A : TypeU} (R : A → A → Bool) (a b : A)
:= ∀ P, (reflexive P) → (transitive P) → (R ⊆ P) → P a b
notation 65 _⁺ : tcls -- use superscript + as notation for transitive closure
theorem tcls_trans {A : TypeU} {R : A → A → Bool} {a b c : A} (Hab : R⁺ a b) (Hbc : R⁺ b c) : R⁺ a c
:= take P, assume Hrefl Htrans Hsub,
let Pab : P a b := Hab P Hrefl Htrans Hsub,
Pbc : P b c := Hbc P Hrefl Htrans Hsub
in Htrans a b c Pab Pbc
theorem tcls_refl {A : TypeU} (R : A → A → Bool) : ∀ a, R⁺ a a
:= take a P, assume Hrefl Htrans Hsub,
Hrefl a
theorem tcls_sub {A : TypeU} (R : A → A → Bool) : R ⊆ R⁺
:= take a b,
assume Hab : R a b,
have R⁺ a b :
take P, assume Hrefl Htrans Hsub,
Hsub a b Hab
theorem tcls_step {A : TypeU} {R : A → A → Bool} {a b c : A} (H1 : R a b) (H2 : R⁺ b c) : R⁺ a c
:= take P, assume Hrefl Htrans Hsub,
Htrans a b c (Hsub a b H1) (H2 P Hrefl Htrans Hsub)
theorem tcls_smallest {A : TypeU} (R : A → A → Bool) : ∀ P, (reflexive P) → (transitive P) → (R ⊆ P) → (R⁺ ⊆ P)
:= take P, assume Hrefl Htrans Hsub,
take a b, assume H : R⁺ a b,
have P a b : H P Hrefl Htrans Hsub