fix(library): remove "-[notations]" hack at "open -[notations] algebra"

This commit is contained in:
Leonardo de Moura 2015-10-11 20:35:45 -07:00
parent 26eb6fa849
commit 724aacb2c1
26 changed files with 27 additions and 30 deletions

View file

@ -8,7 +8,7 @@ Finite bags.
import data.nat data.list.perm algebra.binary import data.nat data.list.perm algebra.binary
open nat quot list subtype binary function eq.ops open nat quot list subtype binary function eq.ops
open [declarations] perm open [declarations] perm
open - [notations] algebra open algebra
variable {A : Type} variable {A : Type}

View file

@ -7,7 +7,7 @@ Cardinality calculations for finite sets.
-/ -/
import .to_set .bigops data.set.function data.nat.power data.nat.bigops import .to_set .bigops data.set.function data.nat.power data.nat.bigops
open nat nat.finset eq.ops open nat nat.finset eq.ops
open - [notations] algebra open algebra
namespace finset namespace finset

View file

@ -5,7 +5,7 @@ Author: Leonardo de Moura
-/ -/
import data.finset.card import data.finset.card
open nat nat.finset decidable open nat nat.finset decidable
open - [notations] algebra open algebra
namespace finset namespace finset
variable {A : Type} variable {A : Type}

View file

@ -7,7 +7,7 @@ Author : Haitao Zhang
import data import data
open nat function eq.ops open nat function eq.ops
open - [notations] algebra open algebra
namespace list namespace list
-- this is in preparation for counting the number of finite functions -- this is in preparation for counting the number of finite functions

View file

@ -10,9 +10,8 @@ we implement this module using a bijection from (finset nat) to nat, and
this bijection is implemeted using the Ackermann coding. this bijection is implemeted using the Ackermann coding.
-/ -/
import data.nat data.finset.equiv data.list import data.nat data.finset.equiv data.list
open nat binary open nat binary algebra
open - [notations] finset open - [notations] finset
open - [notations] algebra
definition hf := nat definition hf := nat

View file

@ -10,7 +10,7 @@ Following SSReflect and the SMTlib standard, we define a mod b so that 0 ≤ a m
import data.int.order data.nat.div import data.int.order data.nat.div
open [coercions] [reduce_hints] nat open [coercions] [reduce_hints] nat
open [declarations] [classes] nat (succ) open [declarations] [classes] nat (succ)
open - [notations] algebra open algebra
open eq.ops open eq.ops
namespace int namespace int

View file

@ -8,7 +8,7 @@ and transfer the results.
-/ -/
import .basic algebra.ordered_ring import .basic algebra.ordered_ring
open nat open nat
open - [notations] algebra open algebra
open decidable open decidable
open int eq.ops open int eq.ops

View file

@ -8,7 +8,7 @@ The power function on the integers.
import data.int.basic data.int.order data.int.div algebra.group_power data.nat.power import data.int.basic data.int.order data.int.div algebra.group_power data.nat.power
namespace int namespace int
open - [notations] algebra open algebra
definition int_has_pow_nat [reducible] [instance] [priority int.prio] : has_pow_nat int := definition int_has_pow_nat [reducible] [instance] [priority int.prio] : has_pow_nat int :=
has_pow_nat.mk has_pow_nat.pow_nat has_pow_nat.mk has_pow_nat.pow_nat

View file

@ -7,7 +7,7 @@ Basic properties of lists.
-/ -/
import logic tools.helper_tactics data.nat.order import logic tools.helper_tactics data.nat.order
open eq.ops helper_tactics nat prod function option open eq.ops helper_tactics nat prod function option
open - [notations] algebra open algebra
inductive list (T : Type) : Type := inductive list (T : Type) : Type :=
| nil {} : list T | nil {} : list T

View file

@ -289,7 +289,7 @@ nat.cases_on n
... = succ (succ n' * m' + n') : add_succ)⁻¹ ... = succ (succ n' * m' + n') : add_succ)⁻¹
!succ_ne_zero)) !succ_ne_zero))
open - [notations] algebra open algebra
protected definition comm_semiring [reducible] [trans_instance] : algebra.comm_semiring nat := protected definition comm_semiring [reducible] [trans_instance] : algebra.comm_semiring nat :=
⦃algebra.comm_semiring, ⦃algebra.comm_semiring,
add := nat.add, add := nat.add,

View file

@ -7,7 +7,7 @@ Definitions and properties of div and mod. Much of the development follows Isabe
-/ -/
import data.nat.sub import data.nat.sub
open eq.ops well_founded decidable prod open eq.ops well_founded decidable prod
open - [notations] algebra open algebra
namespace nat namespace nat

View file

@ -6,7 +6,7 @@ Authors: Leonardo de Moura
Factorial Factorial
-/ -/
import data.nat.div import data.nat.div
open - [notations] algebra open algebra
namespace nat namespace nat
definition fact : nat → nat definition fact : nat → nat

View file

@ -7,7 +7,7 @@ Definitions and properties of gcd, lcm, and coprime.
-/ -/
import .div import .div
open eq.ops well_founded decidable prod open eq.ops well_founded decidable prod
open - [notations] algebra open algebra
namespace nat namespace nat

View file

@ -134,7 +134,7 @@ else (eq_max_left h) ▸ !le.refl
/- nat is an instance of a linearly ordered semiring and a lattice -/ /- nat is an instance of a linearly ordered semiring and a lattice -/
open - [notations] algebra open algebra
protected definition decidable_linear_ordered_semiring [reducible] [trans_instance] : protected definition decidable_linear_ordered_semiring [reducible] [trans_instance] :
algebra.decidable_linear_ordered_semiring nat := algebra.decidable_linear_ordered_semiring nat :=

View file

@ -7,7 +7,7 @@ Elegant pairing function.
-/ -/
import data.nat.sqrt data.nat.div import data.nat.sqrt data.nat.div
open prod decidable open prod decidable
open - [notations] algebra open algebra
namespace nat namespace nat
definition mkpair (a b : nat) : nat := definition mkpair (a b : nat) : nat :=

View file

@ -6,7 +6,7 @@ Authors: Leonardo de Moura, Jeremy Avigad
The power function on the natural numbers. The power function on the natural numbers.
-/ -/
import data.nat.basic data.nat.order data.nat.div data.nat.gcd algebra.ring_power import data.nat.basic data.nat.order data.nat.div data.nat.gcd algebra.ring_power
open - [notations] algebra open algebra
namespace nat namespace nat

View file

@ -10,7 +10,7 @@ import data.nat.order data.nat.sub
namespace nat namespace nat
open decidable open decidable
open - [notations] algebra open algebra
-- This is the simplest possible function that just performs a linear search -- This is the simplest possible function that just performs a linear search
definition sqrt_aux : nat → nat → nat definition sqrt_aux : nat → nat → nat

View file

@ -289,7 +289,7 @@ sub.cases
... = k - n + n : sub_add_cancel H3, ... = k - n + n : sub_add_cancel H3,
le.intro (add.cancel_right H4)) le.intro (add.cancel_right H4))
open - [notations] algebra open algebra
theorem sub_pos_of_lt {m n : } (H : m < n) : n - m > 0 := theorem sub_pos_of_lt {m n : } (H : m < n) : n - m > 0 :=
assert H1 : n = n - m + m, from (sub_add_cancel (le_of_lt H))⁻¹, assert H1 : n = n - m + m, from (sub_add_cancel (le_of_lt H))⁻¹,

View file

@ -10,7 +10,7 @@ are those needed for that construction.
-/ -/
import data.rat.order data.nat import data.rat.order data.nat
open nat rat subtype eq.ops open nat rat subtype eq.ops
open - [notations] algebra open algebra
namespace pnat namespace pnat

View file

@ -7,7 +7,7 @@ The rational numbers as a field generated by the integers, defined as the usual
-/ -/
import data.int algebra.field import data.int algebra.field
open int quot eq.ops open int quot eq.ops
open - [notations] algebra open algebra
record prerat : Type := record prerat : Type :=
(num : ) (denom : ) (denom_pos : denom > 0) (num : ) (denom : ) (denom_pos : denom > 0)

View file

@ -7,7 +7,7 @@ Adds the ordering, and instantiates the rationals as an ordered field.
-/ -/
import data.int algebra.ordered_field algebra.group_power data.rat.basic import data.int algebra.ordered_field algebra.group_power data.rat.basic
open quot eq.ops open quot eq.ops
open - [notations] algebra open algebra
/- the ordering on representations -/ /- the ordering on representations -/

View file

@ -22,8 +22,8 @@ The construction of the reals is arranged in four files.
-/ -/
import data.nat data.rat.order data.pnat import data.nat data.rat.order data.pnat
open nat eq pnat open nat eq pnat
open algebra
open - [coercions] rat open - [coercions] rat
open - [notations] algebra
local postfix `⁻¹` := pnat.inv local postfix `⁻¹` := pnat.inv
local notation 0 := rat.of_num 0 local notation 0 := rat.of_num 0

View file

@ -13,7 +13,7 @@ section Bezout
open nat int open nat int
open eq.ops well_founded decidable prod open eq.ops well_founded decidable prod
open - [notations] algebra open algebra
private definition pair_nat.lt : × × → Prop := measure pr₂ private definition pair_nat.lt : × × → Prop := measure pr₂
private definition pair_nat.lt.wf : well_founded pair_nat.lt := intro_k (measure.wf pr₂) 20 private definition pair_nat.lt.wf : well_founded pair_nat.lt := intro_k (measure.wf pr₂) 20
@ -92,8 +92,7 @@ implies prime (dvd_or_dvd_of_prime_of_dvd_mul).
-/ -/
namespace nat namespace nat
open int open int algebra
open - [notations] algebra
example {p x y : } (pp : prime p) (H : p x * y) : p x p y := example {p x y : } (pp : prime p) (H : p x * y) : p x p y :=
decidable.by_cases decidable.by_cases

View file

@ -7,7 +7,7 @@ A proof that if n > 1 and a > 0, then the nth root of a is irrational, unless a
-/ -/
import data.rat .prime_factorization import data.rat .prime_factorization
open eq.ops open eq.ops
open - [notations] algebra open algebra
/- First, a textbook proof that sqrt 2 is irrational. -/ /- First, a textbook proof that sqrt 2 is irrational. -/

View file

@ -11,7 +11,7 @@ Multiplicity and prime factors. We have:
-/ -/
import data.nat data.finset .primes import data.nat data.finset .primes
open eq.ops finset well_founded decidable nat.finset open eq.ops finset well_founded decidable nat.finset
open - [notations] algebra open algebra
namespace nat namespace nat

View file

@ -6,8 +6,7 @@ Authors: Leonardo de Moura, Jeremy Avigad
Prime numbers. Prime numbers.
-/ -/
import data.nat logic.identities import data.nat logic.identities
open bool open bool algebra
open - [notations] algebra
namespace nat namespace nat
open decidable open decidable