library/algebra/complete_lattice): fix typo in comment
This commit is contained in:
parent
173368801b
commit
7600d04533
1 changed files with 2 additions and 2 deletions
|
@ -21,14 +21,14 @@ structure complete_lattice [class] (A : Type) extends lattice A :=
|
|||
(Sup_le : ∀ {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → le a b), le (Sup s) b)
|
||||
|
||||
-- Minimal complete_lattice definition based just on Inf.
|
||||
-- We latet show that complete_lattice_Inf is a complete_lattice
|
||||
-- We later show that complete_lattice_Inf is a complete_lattice.
|
||||
structure complete_lattice_Inf [class] (A : Type) extends weak_order A :=
|
||||
(Inf : set A → A)
|
||||
(Inf_le : ∀ {a : A} {s : set A}, a ∈ s → le (Inf s) a)
|
||||
(le_Inf : ∀ {b : A} {s : set A}, (∀ (a : A), a ∈ s → le b a) → le b (Inf s))
|
||||
|
||||
-- Minimal complete_lattice definition based just on Sup.
|
||||
-- We later show that complete_lattice_Sup is a complete_lattice
|
||||
-- We later show that complete_lattice_Sup is a complete_lattice.
|
||||
structure complete_lattice_Sup [class] (A : Type) extends weak_order A :=
|
||||
(Sup : set A → A)
|
||||
(le_Sup : ∀ {a : A} {s : set A}, a ∈ s → le a (Sup s))
|
||||
|
|
Loading…
Reference in a new issue