feat(hott): add some attributes
This commit is contained in:
parent
cd74b6bff0
commit
78092af27f
3 changed files with 4 additions and 4 deletions
|
@ -41,7 +41,7 @@ namespace is_equiv
|
||||||
protected abbreviation mk [constructor] := @is_equiv.mk' A B f
|
protected abbreviation mk [constructor] := @is_equiv.mk' A B f
|
||||||
|
|
||||||
-- The identity function is an equivalence.
|
-- The identity function is an equivalence.
|
||||||
definition is_equiv_id [instance] (A : Type) : (is_equiv (id : A → A)) :=
|
definition is_equiv_id [instance] [constructor] (A : Type) : (is_equiv (id : A → A)) :=
|
||||||
is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp)
|
is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp)
|
||||||
|
|
||||||
-- The composition of two equivalences is, again, an equivalence.
|
-- The composition of two equivalences is, again, an equivalence.
|
||||||
|
|
|
@ -358,7 +358,7 @@ namespace pointed
|
||||||
attribute pequiv.to_pmap [coercion]
|
attribute pequiv.to_pmap [coercion]
|
||||||
attribute pequiv.is_equiv_to_pmap [instance]
|
attribute pequiv.is_equiv_to_pmap [instance]
|
||||||
|
|
||||||
definition pequiv.mk' (to_pmap : A →* B) [is_equiv_to_pmap : is_equiv to_pmap] :
|
definition pequiv.mk' [constructor] (to_pmap : A →* B) [is_equiv_to_pmap : is_equiv to_pmap] :
|
||||||
pequiv A B :=
|
pequiv A B :=
|
||||||
pequiv.mk to_pmap is_equiv_to_pmap
|
pequiv.mk to_pmap is_equiv_to_pmap
|
||||||
|
|
||||||
|
|
|
@ -20,7 +20,7 @@ namespace sigma
|
||||||
|
|
||||||
/- Paths in a sigma-type -/
|
/- Paths in a sigma-type -/
|
||||||
|
|
||||||
protected definition eta : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u
|
protected definition eta [unfold 3] : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u
|
||||||
| eta ⟨u₁, u₂⟩ := idp
|
| eta ⟨u₁, u₂⟩ := idp
|
||||||
|
|
||||||
definition eta2 : Π (u : Σa b, C a b), ⟨u.1, u.2.1, u.2.2⟩ = u
|
definition eta2 : Π (u : Σa b, C a b), ⟨u.1, u.2.1, u.2.2⟩ = u
|
||||||
|
@ -214,7 +214,7 @@ namespace sigma
|
||||||
sigma_functor id g u
|
sigma_functor id g u
|
||||||
|
|
||||||
/- Equivalences -/
|
/- Equivalences -/
|
||||||
definition is_equiv_sigma_functor [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
|
definition is_equiv_sigma_functor [constructor] [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
|
||||||
: is_equiv (sigma_functor f g) :=
|
: is_equiv (sigma_functor f g) :=
|
||||||
adjointify (sigma_functor f g)
|
adjointify (sigma_functor f g)
|
||||||
(sigma_functor f⁻¹ (λ(a' : A') (b' : B' a'),
|
(sigma_functor f⁻¹ (λ(a' : A') (b' : B' a'),
|
||||||
|
|
Loading…
Reference in a new issue