feat(hott): add some attributes

This commit is contained in:
Floris van Doorn 2016-02-11 17:58:19 -05:00 committed by Leonardo de Moura
parent cd74b6bff0
commit 78092af27f
3 changed files with 4 additions and 4 deletions

View file

@ -41,7 +41,7 @@ namespace is_equiv
protected abbreviation mk [constructor] := @is_equiv.mk' A B f protected abbreviation mk [constructor] := @is_equiv.mk' A B f
-- The identity function is an equivalence. -- The identity function is an equivalence.
definition is_equiv_id [instance] (A : Type) : (is_equiv (id : A → A)) := definition is_equiv_id [instance] [constructor] (A : Type) : (is_equiv (id : A → A)) :=
is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp) is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp)
-- The composition of two equivalences is, again, an equivalence. -- The composition of two equivalences is, again, an equivalence.

View file

@ -358,7 +358,7 @@ namespace pointed
attribute pequiv.to_pmap [coercion] attribute pequiv.to_pmap [coercion]
attribute pequiv.is_equiv_to_pmap [instance] attribute pequiv.is_equiv_to_pmap [instance]
definition pequiv.mk' (to_pmap : A →* B) [is_equiv_to_pmap : is_equiv to_pmap] : definition pequiv.mk' [constructor] (to_pmap : A →* B) [is_equiv_to_pmap : is_equiv to_pmap] :
pequiv A B := pequiv A B :=
pequiv.mk to_pmap is_equiv_to_pmap pequiv.mk to_pmap is_equiv_to_pmap

View file

@ -20,7 +20,7 @@ namespace sigma
/- Paths in a sigma-type -/ /- Paths in a sigma-type -/
protected definition eta : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u protected definition eta [unfold 3] : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u
| eta ⟨u₁, u₂⟩ := idp | eta ⟨u₁, u₂⟩ := idp
definition eta2 : Π (u : Σa b, C a b), ⟨u.1, u.2.1, u.2.2⟩ = u definition eta2 : Π (u : Σa b, C a b), ⟨u.1, u.2.1, u.2.2⟩ = u
@ -214,7 +214,7 @@ namespace sigma
sigma_functor id g u sigma_functor id g u
/- Equivalences -/ /- Equivalences -/
definition is_equiv_sigma_functor [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)] definition is_equiv_sigma_functor [constructor] [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
: is_equiv (sigma_functor f g) := : is_equiv (sigma_functor f g) :=
adjointify (sigma_functor f g) adjointify (sigma_functor f g)
(sigma_functor f⁻¹ (λ(a' : A') (b' : B' a'), (sigma_functor f⁻¹ (λ(a' : A') (b' : B' a'),