refactor(library/data/int/order): use 'exists' instead of 'ex', 'least' instead of 'smallest', etc.

This commit is contained in:
Jeremy Avigad 2015-09-12 20:51:34 -04:00
parent 1affeec3c6
commit 780c950414
2 changed files with 5 additions and 3 deletions

View file

@ -389,7 +389,8 @@ dvd.elim H'
suppose 1 = a * b, suppose 1 = a * b,
eq_one_of_mul_eq_one_right H this⁻¹) eq_one_of_mul_eq_one_right H this⁻¹)
theorem ex_smallest_of_bdd {P : → Prop} [HP : decidable_pred P] (Hbdd : ∃ b : , ∀ z : , z ≤ b → ¬ P z) theorem exists_least_of_bdd {P : → Prop} [HP : decidable_pred P]
(Hbdd : ∃ b : , ∀ z : , z ≤ b → ¬ P z)
(Hinh : ∃ z : , P z) : ∃ lb : , P lb ∧ (∀ z : , z < lb → ¬ P z) := (Hinh : ∃ z : , P z) : ∃ lb : , P lb ∧ (∀ z : , z < lb → ¬ P z) :=
begin begin
cases Hbdd with [b, Hb], cases Hbdd with [b, Hb],
@ -426,7 +427,8 @@ theorem ex_smallest_of_bdd {P : → Prop} [HP : decidable_pred P] (Hbdd :
apply least_lt _ !lt_succ_self H' apply least_lt _ !lt_succ_self H'
end end
theorem ex_largest_of_bdd {P : → Prop} [HP : decidable_pred P] (Hbdd : ∃ b : , ∀ z : , z ≥ b → ¬ P z) theorem exists_greatest_of_bdd {P : → Prop} [HP : decidable_pred P]
(Hbdd : ∃ b : , ∀ z : , z ≥ b → ¬ P z)
(Hinh : ∃ z : , P z) : ∃ ub : , P ub ∧ (∀ z : , z > ub → ¬ P z) := (Hinh : ∃ z : , P z) : ∃ ub : , P ub ∧ (∀ z : , z > ub → ¬ P z) :=
begin begin
cases Hbdd with [b, Hb], cases Hbdd with [b, Hb],

View file

@ -423,7 +423,7 @@ theorem archimedean_lower_strict (x : ) : ∃ z : , x > of_int z :=
end end
private definition ex_floor (x : ) := private definition ex_floor (x : ) :=
(@ex_largest_of_bdd (λ z, x ≥ of_int z) _ (@exists_greatest_of_bdd (λ z, x ≥ of_int z) _
(begin (begin
existsi some (archimedean_upper_strict x), existsi some (archimedean_upper_strict x),
let Har := some_spec (archimedean_upper_strict x), let Har := some_spec (archimedean_upper_strict x),