feat(library/data/finset/basic.lean): add useful calculation rules for quantifiers
This commit is contained in:
parent
9720d84095
commit
783dd61083
1 changed files with 54 additions and 0 deletions
|
@ -492,5 +492,59 @@ iff.intro lt_of_mem_upto mem_upto_of_lt
|
||||||
theorem mem_upto_eq (a n : nat) : a ∈ upto n = (a < n) :=
|
theorem mem_upto_eq (a n : nat) : a ∈ upto n = (a < n) :=
|
||||||
propext !mem_upto_iff
|
propext !mem_upto_iff
|
||||||
end upto
|
end upto
|
||||||
|
|
||||||
|
/- useful rules for calculations with quantifiers -/
|
||||||
|
theorem exists_mem_empty_iff {A : Type} (P : A → Prop) : (∃ x, x ∈ ∅ ∧ P x) ↔ false :=
|
||||||
|
iff.intro
|
||||||
|
(assume H,
|
||||||
|
obtain x (H1 : x ∈ ∅ ∧ P x), from H,
|
||||||
|
!not_mem_empty (and.left H1))
|
||||||
|
(assume H, false.elim H)
|
||||||
|
|
||||||
|
theorem exists_mem_empty_eq {A : Type} (P : A → Prop) : (∃ x, x ∈ ∅ ∧ P x) = false :=
|
||||||
|
propext !exists_mem_empty_iff
|
||||||
|
|
||||||
|
theorem exists_mem_insert_iff {A : Type} [d : decidable_eq A]
|
||||||
|
(a : A) (s : finset A) (P : A → Prop) :
|
||||||
|
(∃ x, x ∈ insert a s ∧ P x) ↔ P a ∨ (∃ x, x ∈ s ∧ P x) :=
|
||||||
|
iff.intro
|
||||||
|
(assume H,
|
||||||
|
obtain x [H1 H2], from H,
|
||||||
|
or.elim (eq_or_mem_of_mem_insert H1)
|
||||||
|
(assume H3 : x = a, or.inl (eq.subst H3 H2))
|
||||||
|
(assume H3 : x ∈ s, or.inr (exists.intro x (and.intro H3 H2))))
|
||||||
|
(assume H,
|
||||||
|
or.elim H
|
||||||
|
(assume H1 : P a, exists.intro a (and.intro !mem_insert H1))
|
||||||
|
(assume H1 : ∃ x, x ∈ s ∧ P x,
|
||||||
|
obtain x [H2 H3], from H1,
|
||||||
|
exists.intro x (and.intro (!mem_insert_of_mem H2) H3)))
|
||||||
|
|
||||||
|
theorem exists_mem_insert_eq {A : Type} [d : decidable_eq A] (a : A) (s : finset A) (P : A → Prop) :
|
||||||
|
(∃ x, x ∈ insert a s ∧ P x) = (P a ∨ (∃ x, x ∈ s ∧ P x)) :=
|
||||||
|
propext !exists_mem_insert_iff
|
||||||
|
|
||||||
|
theorem forall_mem_empty_iff {A : Type} (P : A → Prop) : (∀ x, x ∈ ∅ → P x) ↔ true :=
|
||||||
|
iff.intro
|
||||||
|
(assume H, trivial)
|
||||||
|
(assume H, take x, assume H', absurd H' !not_mem_empty)
|
||||||
|
|
||||||
|
theorem forall_mem_empty_eq {A : Type} (P : A → Prop) : (∀ x, x ∈ ∅ → P x) = true :=
|
||||||
|
propext !forall_mem_empty_iff
|
||||||
|
|
||||||
|
theorem forall_mem_insert_iff {A : Type} [d : decidable_eq A]
|
||||||
|
(a : A) (s : finset A) (P : A → Prop) :
|
||||||
|
(∀ x, x ∈ insert a s → P x) ↔ P a ∧ (∀ x, x ∈ s → P x) :=
|
||||||
|
iff.intro
|
||||||
|
(assume H, and.intro (H _ !mem_insert) (take x, assume H', H _ (!mem_insert_of_mem H')))
|
||||||
|
(assume H, take x, assume H' : x ∈ insert a s,
|
||||||
|
or.elim (eq_or_mem_of_mem_insert H')
|
||||||
|
(assume H1 : x = a, eq.subst (eq.symm H1) (and.left H))
|
||||||
|
(assume H1 : x ∈ s, and.right H _ H1))
|
||||||
|
|
||||||
|
theorem forall_mem_insert_eq {A : Type} [d : decidable_eq A] (a : A) (s : finset A) (P : A → Prop) :
|
||||||
|
(∀ x, x ∈ insert a s → P x) = (P a ∧ (∀ x, x ∈ s → P x)) :=
|
||||||
|
propext !forall_mem_insert_iff
|
||||||
|
|
||||||
end finset
|
end finset
|
||||||
abbreviation finset := finset.finset
|
abbreviation finset := finset.finset
|
||||||
|
|
Loading…
Reference in a new issue