feat(library/unifier): improve FailLocal/FailCircular failures in the unifier by using normalization

This improvements was marked as TODO, and was preventing us from
elaborating the example in the new test vector3.lean
This commit is contained in:
Leonardo de Moura 2014-10-27 16:49:29 -07:00
parent bca2be56ec
commit 78bc3ef7e4
4 changed files with 51 additions and 9 deletions

View file

@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "util/interrupt.h"
#include "util/name_generator.h"
#include "kernel/type_checker.h"
#include "kernel/instantiate.h"
@ -14,7 +15,7 @@ namespace lean {
class normalize_fn {
type_checker & m_tc;
name_generator m_ngen;
std::function<bool(expr const &)> m_pred;
std::function<bool(expr const &)> m_pred; // NOLINT
bool m_save_cnstrs;
constraint_seq m_cnstrs;
@ -34,6 +35,7 @@ class normalize_fn {
}
expr normalize(expr e) {
check_system("normalize");
if (!m_pred(e))
return e;
auto w = m_tc.whnf(e);
@ -58,7 +60,7 @@ public:
m_pred([](expr const &) { return true; }),
m_save_cnstrs(save) {}
normalize_fn(type_checker & tc, std::function<bool(expr const &)> const & fn):
normalize_fn(type_checker & tc, std::function<bool(expr const &)> const & fn): // NOLINT
m_tc(tc), m_ngen(m_tc.mk_ngen()),
m_pred(fn) {}
@ -101,7 +103,8 @@ expr normalize(type_checker & tc, expr const & e, constraint_seq & cs) {
return r;
}
expr normalize(type_checker & tc, expr const & e, std::function<bool(expr const &)> const & pred, constraint_seq & cs) {
expr normalize(type_checker & tc, expr const & e, std::function<bool(expr const &)> const & pred, // NOLINT
constraint_seq & cs) {
normalize_fn fn(tc, pred);
expr r = fn(e);
cs += fn.get_cnstrs();

View file

@ -28,6 +28,6 @@ expr normalize(type_checker & tc, expr const & e, constraint_seq & cs);
\remark A sub-expression is evaluated only if \c pred returns true.
*/
expr normalize(type_checker & tc, expr const & e, std::function<bool(expr const&)> const & pred,
expr normalize(type_checker & tc, expr const & e, std::function<bool(expr const&)> const & pred, // NOLINT
constraint_seq & cs);
}

View file

@ -21,6 +21,7 @@ Author: Leonardo de Moura
#include "kernel/type_checker.h"
#include "kernel/kernel_exception.h"
#include "kernel/error_msgs.h"
#include "library/normalize.h"
#include "library/occurs.h"
#include "library/locals.h"
#include "library/module.h"
@ -726,13 +727,18 @@ struct unifier_fn {
auto status = occurs_context_check(m_subst, rhs, *m, locals, bad_local);
if (status == occurs_check_status::FailLocal || status == occurs_check_status::FailCircular) {
// Try to normalize rhs
// TODO(Leo): use a custom normalizer that uses reduction to solve just the failure.
// TODO(Leo): this code is using only whnf, we may fail to eliminate the failure.
// Example: ?M := f (pr1 (pair 0 ?M))
constraint_seq cs;
expr rhs_whnf = whnf(rhs, relax, cs);
if (rhs != rhs_whnf && process_constraints(cs))
return process_metavar_eq(lhs, rhs_whnf, j, relax);
auto is_target_fn = [&](expr const & e) {
if (status == occurs_check_status::FailLocal && occurs(bad_local, e))
return true;
else if (status == occurs_check_status::FailCircular && occurs(*m, e))
return true;
return false;
};
expr rhs_n = normalize(*m_tc[relax], rhs, is_target_fn, cs);
if (rhs != rhs_n && process_constraints(cs))
return process_metavar_eq(lhs, rhs_n, j, relax);
}
switch (status) {
case occurs_check_status::FailLocal:

View file

@ -0,0 +1,33 @@
import logic data.nat.basic
open nat
inductive vector (A : Type) : nat → Type :=
vnil : vector A zero,
vcons : Π {n : nat}, A → vector A n → vector A (succ n)
namespace vector
definition no_confusion_type {A : Type} {n : nat} (P : Type) (v₁ v₂ : vector A n) : Type :=
cases_on v₁
(cases_on v₂
(P → P)
(λ n₂ h₂ t₂, P))
(λ n₁ h₁ t₁, cases_on v₂
P
(λ n₂ h₂ t₂, (Π (H : n₁ = n₂), h₁ = h₂ → eq.rec_on H t₁ = t₂ → P) → P))
definition no_confusion {A : Type} {n : nat} {P : Type} {v₁ v₂ : vector A n} : v₁ = v₂ → no_confusion_type P v₁ v₂ :=
assume H₁₂ : v₁ = v₂,
have aux : v₁ = v₁ → no_confusion_type P v₁ v₁, from
take H₁₁, cases_on v₁
(assume h : P, h)
(take n₁ h₁ t₁, assume h : (Π (H : n₁ = n₁), h₁ = h₁ → t₁ = t₁ → P),
h rfl rfl rfl),
eq.rec aux H₁₂ H₁₂
theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ :=
assume h, no_confusion h (λ n h t, h)
theorem vcons.inj₂ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → v₁ = v₂ :=
assume h, no_confusion h (λ n h t, t)
end vector