feat(library/data): add auxiliary definitions

This commit is contained in:
Leonardo de Moura 2015-06-02 22:08:25 -07:00
parent 228a99af7e
commit 7a39d5aaa3
2 changed files with 41 additions and 0 deletions

View file

@ -18,6 +18,9 @@ notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
variable {T : Type} variable {T : Type}
lemma cons_ne_nil (a : T) (l : list T) : a::l ≠ [] :=
by contradiction
/- append -/ /- append -/
definition append : list T → list T → list T definition append : list T → list T → list T
@ -65,6 +68,10 @@ theorem eq_nil_of_length_eq_zero : ∀ {l : list T}, length l = 0 → l = []
| [] H := rfl | [] H := rfl
| (a::s) H := by contradiction | (a::s) H := by contradiction
theorem ne_nil_of_length_eq_succ : ∀ {l : list T} {n : nat}, length l = succ n → l ≠ []
| [] n h := by contradiction
| (a::l) n h := by contradiction
-- add_rewrite length_nil length_cons -- add_rewrite length_nil length_cons
/- concat -/ /- concat -/
@ -83,6 +90,36 @@ theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a]
show b :: (concat a l) = (b :: l) ++ (a :: []), show b :: (concat a l) = (b :: l) ++ (a :: []),
by rewrite concat_eq_append by rewrite concat_eq_append
theorem concat_ne_nil (a : T) : ∀ (l : list T), concat a l ≠ [] :=
by intro l; induction l; repeat contradiction
/- last -/
definition last : Π l : list T, l ≠ [] → T
| [] h := absurd rfl h
| [a] h := a
| (a₁::a₂::l) h := last (a₂::l) !cons_ne_nil
lemma last_singleton (a : T) (h : [a] ≠ []) : last [a] h = a :=
rfl
lemma last_cons_cons (a₁ a₂ : T) (l : list T) (h : a₁::a₂::l ≠ []) : last (a₁::a₂::l) h = last (a₂::l) !cons_ne_nil :=
rfl
theorem last_congr {l₁ l₂ : list T} (h₁ : l₁ ≠ []) (h₂ : l₂ ≠ []) (h₃ : l₁ = l₂) : last l₁ h₁ = last l₂ h₂ :=
by subst l₁
theorem last_concat {x : T} : ∀ {l : list T} (h : concat x l ≠ []), last (concat x l) h = x
| [] h := rfl
| [a] h := rfl
| (a₁::a₂::l) h :=
begin
change last (a₁::a₂::concat x l) !cons_ne_nil = x,
rewrite last_cons_cons,
change last (concat x (a₂::l)) !concat_ne_nil = x,
apply last_concat
end
-- add_rewrite append_nil append_cons -- add_rewrite append_nil append_cons
/- reverse -/ /- reverse -/

View file

@ -287,6 +287,10 @@ nat.cases_on n
assume H : succ n' ≤ m, assume H : succ n' ≤ m,
!pred_succ⁻¹ ▸ succ_le_of_le_pred H) !pred_succ⁻¹ ▸ succ_le_of_le_pred H)
theorem pre_lt_of_lt : ∀ {n m : }, n < m → pred n < m
| 0 m h := h
| (succ n) m h := lt_of_succ_lt h
theorem lt_of_pred_lt_pred {n m : } (H : pred n < pred m) : n < m := theorem lt_of_pred_lt_pred {n m : } (H : pred n < pred m) : n < m :=
lt_of_not_ge lt_of_not_ge
(take H1 : m ≤ n, (take H1 : m ≤ n,