refactor(data.prod): move theorems about products from data.quotient.util to data.prod.thms
This commit is contained in:
parent
24e35a9f2c
commit
7bfbe039d9
2 changed files with 83 additions and 85 deletions
|
@ -6,7 +6,7 @@ import data.prod.decl logic.inhabited logic.eq logic.decidable
|
|||
open inhabited decidable eq.ops
|
||||
|
||||
namespace prod
|
||||
variables {A B : Type} {a₁ a₂ : A} {b₁ b₂ : B}
|
||||
variables {A B : Type} {a₁ a₂ : A} {b₁ b₂ : B} {u : A × B}
|
||||
|
||||
theorem pair_eq : a₁ = a₂ → b₁ = b₂ → (a₁, b₁) = (a₂, b₂) :=
|
||||
assume H1 H2, H1 ▸ H2 ▸ rfl
|
||||
|
@ -25,4 +25,86 @@ namespace prod
|
|||
(assume H, H ▸ and.intro rfl rfl)
|
||||
(assume H, and.elim H (assume H₄ H₅, equal H₄ H₅)),
|
||||
decidable_iff_equiv _ (iff.symm H₃)
|
||||
|
||||
-- ### flip operation
|
||||
|
||||
definition flip (a : A × B) : B × A := pair (pr2 a) (pr1 a)
|
||||
|
||||
theorem flip_def (a : A × B) : flip a = pair (pr2 a) (pr1 a) := rfl
|
||||
theorem flip_pair (a : A) (b : B) : flip (pair a b) = pair b a := rfl
|
||||
theorem flip_pr1 (a : A × B) : pr1 (flip a) = pr2 a := rfl
|
||||
theorem flip_pr2 (a : A × B) : pr2 (flip a) = pr1 a := rfl
|
||||
theorem flip_flip (a : A × B) : flip (flip a) = a :=
|
||||
destruct a (take x y, rfl)
|
||||
|
||||
theorem P_flip {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a))
|
||||
: P (pr2 (flip a)) (pr1 (flip a)) :=
|
||||
(flip_pr1 a)⁻¹ ▸ (flip_pr2 a)⁻¹ ▸ H
|
||||
|
||||
theorem flip_inj {a b : A × B} (H : flip a = flip b) : a = b :=
|
||||
have H2 : flip (flip a) = flip (flip b), from congr_arg flip H,
|
||||
show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2
|
||||
|
||||
-- ### coordinatewise unary maps
|
||||
|
||||
definition map_pair (f : A → B) (a : A × A) : B × B :=
|
||||
pair (f (pr1 a)) (f (pr2 a))
|
||||
|
||||
theorem map_pair_def (f : A → B) (a : A × A)
|
||||
: map_pair f a = pair (f (pr1 a)) (f (pr2 a)) :=
|
||||
rfl
|
||||
|
||||
theorem map_pair_pair (f : A → B) (a a' : A)
|
||||
: map_pair f (pair a a') = pair (f a) (f a') :=
|
||||
(pr1.mk a a') ▸ (pr2.mk a a') ▸ rfl
|
||||
|
||||
theorem map_pair_pr1 (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a) :=
|
||||
!pr1.mk
|
||||
|
||||
theorem map_pair_pr2 (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a) :=
|
||||
!pr2.mk
|
||||
|
||||
-- ### coordinatewise binary maps
|
||||
|
||||
definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C :=
|
||||
pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b))
|
||||
|
||||
theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl
|
||||
|
||||
theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) :
|
||||
map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') :=
|
||||
calc
|
||||
map_pair2 f (pair a a') (pair b b')
|
||||
= pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b')))
|
||||
: {pr1.mk b b'}
|
||||
... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2.mk b b'}
|
||||
... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2.mk a a'}
|
||||
... = pair (f a b) (f a' b') : {pr1.mk a a'}
|
||||
|
||||
theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := !pr1.mk
|
||||
|
||||
theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := !pr2.mk
|
||||
|
||||
theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) :=
|
||||
have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from
|
||||
calc
|
||||
pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _
|
||||
... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b
|
||||
... = f (pr1 (flip a)) (pr2 b) : {(flip_pr1 a)⁻¹}
|
||||
... = f (pr1 (flip a)) (pr1 (flip b)) : {(flip_pr1 b)⁻¹}
|
||||
... = pr1 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr1 f _ _)⁻¹,
|
||||
have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from
|
||||
calc
|
||||
pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _
|
||||
... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b
|
||||
... = f (pr2 (flip a)) (pr1 b) : {flip_pr2 a}
|
||||
... = f (pr2 (flip a)) (pr2 (flip b)) : {flip_pr2 b}
|
||||
... = pr2 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr2 f _ _)⁻¹,
|
||||
pair_eq Hx Hy
|
||||
|
||||
|
||||
end prod
|
||||
|
|
|
@ -13,90 +13,6 @@ namespace quotient
|
|||
-- auxliary facts about products
|
||||
-- -----------------------------
|
||||
|
||||
-- ### flip
|
||||
|
||||
definition flip {A B : Type} (a : A × B) : B × A := pair (pr2 a) (pr1 a)
|
||||
|
||||
theorem flip_def {A B : Type} (a : A × B) : flip a = pair (pr2 a) (pr1 a) := eq.refl (flip a)
|
||||
|
||||
theorem flip_pair {A B : Type} (a : A) (b : B) : flip (pair a b) = pair b a := rfl
|
||||
|
||||
theorem flip_pr1 {A B : Type} (a : A × B) : pr1 (flip a) = pr2 a := rfl
|
||||
|
||||
theorem flip_pr2 {A B : Type} (a : A × B) : pr2 (flip a) = pr1 a := rfl
|
||||
|
||||
theorem flip_flip {A B : Type} (a : A × B) : flip (flip a) = a :=
|
||||
prod.destruct a (take x y, rfl)
|
||||
|
||||
theorem P_flip {A B : Type} {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a))
|
||||
: P (pr2 (flip a)) (pr1 (flip a)) :=
|
||||
(flip_pr1 a)⁻¹ ▸ (flip_pr2 a)⁻¹ ▸ H
|
||||
|
||||
theorem flip_inj {A B : Type} {a b : A × B} (H : flip a = flip b) : a = b :=
|
||||
have H2 : flip (flip a) = flip (flip b), from congr_arg flip H,
|
||||
show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2
|
||||
|
||||
-- ### coordinatewise unary maps
|
||||
|
||||
definition map_pair {A B : Type} (f : A → B) (a : A × A) : B × B :=
|
||||
pair (f (pr1 a)) (f (pr2 a))
|
||||
|
||||
theorem map_pair_def {A B : Type} (f : A → B) (a : A × A)
|
||||
: map_pair f a = pair (f (pr1 a)) (f (pr2 a)) :=
|
||||
rfl
|
||||
|
||||
theorem map_pair_pair {A B : Type} (f : A → B) (a a' : A)
|
||||
: map_pair f (pair a a') = pair (f a) (f a') :=
|
||||
(pr1.mk a a') ▸ (pr2.mk a a') ▸ rfl
|
||||
|
||||
theorem map_pair_pr1 {A B : Type} (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a) :=
|
||||
!pr1.mk
|
||||
|
||||
theorem map_pair_pr2 {A B : Type} (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a) :=
|
||||
!pr2.mk
|
||||
|
||||
-- ### coordinatewise binary maps
|
||||
|
||||
definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C :=
|
||||
pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b))
|
||||
|
||||
theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl
|
||||
|
||||
theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) :
|
||||
map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') :=
|
||||
calc
|
||||
map_pair2 f (pair a a') (pair b b')
|
||||
= pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b')))
|
||||
: {pr1.mk b b'}
|
||||
... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2.mk b b'}
|
||||
... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2.mk a a'}
|
||||
... = pair (f a b) (f a' b') : {pr1.mk a a'}
|
||||
|
||||
theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := !pr1.mk
|
||||
|
||||
theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := !pr2.mk
|
||||
|
||||
theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) :=
|
||||
have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from
|
||||
calc
|
||||
pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _
|
||||
... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b
|
||||
... = f (pr1 (flip a)) (pr2 b) : {(flip_pr1 a)⁻¹}
|
||||
... = f (pr1 (flip a)) (pr1 (flip b)) : {(flip_pr1 b)⁻¹}
|
||||
... = pr1 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr1 f _ _)⁻¹,
|
||||
have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from
|
||||
calc
|
||||
pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _
|
||||
... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b
|
||||
... = f (pr2 (flip a)) (pr1 b) : {flip_pr2 a}
|
||||
... = f (pr2 (flip a)) (pr2 (flip b)) : {flip_pr2 b}
|
||||
... = pr2 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr2 f _ _)⁻¹,
|
||||
pair_eq Hx Hy
|
||||
|
||||
-- add_rewrite flip_pr1 flip_pr2 flip_pair
|
||||
-- add_rewrite map_pair_pr1 map_pair_pr2 map_pair_pair
|
||||
-- add_rewrite map_pair2_pr1 map_pair2_pr2 map_pair2_pair
|
||||
|
|
Loading…
Reference in a new issue