feat(hott): move basic lemmas from the spectral repository to the main repository
This commit is contained in:
parent
d86284da63
commit
7d0eecc449
41 changed files with 2248 additions and 303 deletions
|
@ -5,7 +5,7 @@ Authors: Jeremy Avigad
|
|||
|
||||
Bundled structures
|
||||
-/
|
||||
import algebra.group
|
||||
import algebra.ring
|
||||
open algebra pointed is_trunc
|
||||
|
||||
namespace algebra
|
||||
|
@ -34,64 +34,82 @@ attribute CommMonoid.carrier [coercion]
|
|||
attribute CommMonoid.struct [instance]
|
||||
|
||||
structure Group :=
|
||||
(carrier : Type) (struct : group carrier)
|
||||
(carrier : Type) (struct' : group carrier)
|
||||
|
||||
attribute Group.carrier [coercion]
|
||||
attribute Group.struct [instance]
|
||||
attribute Group.struct' [instance]
|
||||
|
||||
section
|
||||
local attribute Group.struct [instance]
|
||||
definition pSet_of_Group [constructor] [reducible] [coercion] (G : Group) : Set* :=
|
||||
ptrunctype.mk G !semigroup.is_set_carrier 1
|
||||
local attribute Group.carrier [coercion]
|
||||
definition pSet_of_Group [constructor] [reducible] [coercion] (G : Group) : Set* :=
|
||||
ptrunctype.mk (Group.carrier G) !semigroup.is_set_carrier 1
|
||||
end
|
||||
|
||||
definition Group.struct [instance] [priority 2000] (G : Group) : group G :=
|
||||
Group.struct' G
|
||||
|
||||
attribute algebra._trans_of_pSet_of_Group [unfold 1]
|
||||
attribute algebra._trans_of_pSet_of_Group_1 algebra._trans_of_pSet_of_Group_2 [constructor]
|
||||
|
||||
definition pType_of_Group [reducible] [constructor] : Group → Type* :=
|
||||
algebra._trans_of_pSet_of_Group_1
|
||||
definition Set_of_Group [reducible] [constructor] : Group → Set :=
|
||||
algebra._trans_of_pSet_of_Group_2
|
||||
definition pType_of_Group [reducible] [constructor] (G : Group) : Type* :=
|
||||
G
|
||||
definition Set_of_Group [reducible] [constructor] (G : Group) : Set :=
|
||||
G
|
||||
|
||||
definition AddGroup : Type := Group
|
||||
|
||||
definition pSet_of_AddGroup [constructor] [reducible] [coercion] (G : AddGroup) : Set* :=
|
||||
pSet_of_Group G
|
||||
|
||||
definition AddGroup.mk [constructor] [reducible] (G : Type) (H : add_group G) : AddGroup :=
|
||||
Group.mk G H
|
||||
|
||||
definition AddGroup.struct [reducible] (G : AddGroup) : add_group G :=
|
||||
definition AddGroup.struct [reducible] [instance] [priority 2000] (G : AddGroup) : add_group G :=
|
||||
Group.struct G
|
||||
|
||||
attribute AddGroup.struct Group.struct [instance] [priority 2000]
|
||||
attribute algebra._trans_of_pSet_of_AddGroup [unfold 1]
|
||||
attribute algebra._trans_of_pSet_of_AddGroup_1 algebra._trans_of_pSet_of_AddGroup_2 [constructor]
|
||||
|
||||
definition pType_of_AddGroup [reducible] [constructor] : AddGroup → Type* :=
|
||||
algebra._trans_of_pSet_of_AddGroup_1
|
||||
definition Set_of_AddGroup [reducible] [constructor] : AddGroup → Set :=
|
||||
algebra._trans_of_pSet_of_AddGroup_2
|
||||
|
||||
structure AbGroup :=
|
||||
(carrier : Type) (struct : ab_group carrier)
|
||||
(carrier : Type) (struct' : ab_group carrier)
|
||||
|
||||
attribute AbGroup.carrier [coercion]
|
||||
|
||||
definition AddAbGroup : Type := AbGroup
|
||||
|
||||
definition AddAbGroup.mk [constructor] [reducible] (G : Type) (H : add_ab_group G) :
|
||||
AddAbGroup :=
|
||||
AbGroup.mk G H
|
||||
|
||||
definition AddAbGroup.struct [reducible] (G : AddAbGroup) : add_ab_group G :=
|
||||
AbGroup.struct G
|
||||
|
||||
attribute AddAbGroup.struct AbGroup.struct [instance] [priority 2000]
|
||||
attribute AbGroup.struct' [instance]
|
||||
|
||||
section
|
||||
local attribute AbGroup.carrier [coercion]
|
||||
definition Group_of_AbGroup [coercion] [constructor] (G : AbGroup) : Group :=
|
||||
Group.mk G _
|
||||
end
|
||||
|
||||
definition AbGroup.struct [instance] [priority 2000] (G : AbGroup) : ab_group G :=
|
||||
AbGroup.struct' G
|
||||
|
||||
attribute algebra._trans_of_Group_of_AbGroup_1
|
||||
algebra._trans_of_Group_of_AbGroup
|
||||
algebra._trans_of_Group_of_AbGroup_3 [constructor]
|
||||
attribute algebra._trans_of_Group_of_AbGroup_2 [unfold 1]
|
||||
|
||||
definition ab_group_AbGroup [instance] (G : AbGroup) : ab_group G :=
|
||||
definition AddAbGroup : Type := AbGroup
|
||||
|
||||
definition AddGroup_of_AddAbGroup [coercion] [constructor] (G : AddAbGroup) : AddGroup :=
|
||||
Group_of_AbGroup G
|
||||
|
||||
definition AddAbGroup.struct [reducible] [instance] [priority 2000] (G : AddAbGroup) :
|
||||
add_ab_group G :=
|
||||
AbGroup.struct G
|
||||
|
||||
definition add_ab_group_AddAbGroup [instance] (G : AddAbGroup) : add_ab_group G :=
|
||||
AbGroup.struct G
|
||||
definition AddAbGroup.mk [constructor] [reducible] (G : Type) (H : add_ab_group G) :
|
||||
AddAbGroup :=
|
||||
AbGroup.mk G H
|
||||
|
||||
attribute algebra._trans_of_AddGroup_of_AddAbGroup_1
|
||||
algebra._trans_of_AddGroup_of_AddAbGroup
|
||||
algebra._trans_of_AddGroup_of_AddAbGroup_3 [constructor]
|
||||
attribute algebra._trans_of_AddGroup_of_AddAbGroup_2 [unfold 1]
|
||||
|
||||
-- structure AddSemigroup :=
|
||||
-- (carrier : Type) (struct : add_semigroup carrier)
|
||||
|
@ -132,21 +150,26 @@ AbGroup.struct G
|
|||
|
||||
-- some bundled infinity-structures
|
||||
structure InfGroup :=
|
||||
(carrier : Type) (struct : inf_group carrier)
|
||||
(carrier : Type) (struct' : inf_group carrier)
|
||||
|
||||
attribute InfGroup.carrier [coercion]
|
||||
attribute InfGroup.struct [instance]
|
||||
attribute InfGroup.struct' [instance]
|
||||
|
||||
section
|
||||
local attribute InfGroup.struct [instance]
|
||||
local attribute InfGroup.carrier [coercion]
|
||||
definition pType_of_InfGroup [constructor] [reducible] [coercion] (G : InfGroup) : Type* :=
|
||||
pType.mk G 1
|
||||
end
|
||||
|
||||
attribute algebra._trans_of_pType_of_InfGroup [unfold 1]
|
||||
|
||||
definition InfGroup.struct [instance] [priority 2000] (G : InfGroup) : inf_group G :=
|
||||
InfGroup.struct' G
|
||||
|
||||
definition AddInfGroup : Type := InfGroup
|
||||
|
||||
definition pType_of_AddInfGroup [constructor] [reducible] [coercion] (G : AddInfGroup) : Type* :=
|
||||
pType_of_InfGroup G
|
||||
|
||||
definition AddInfGroup.mk [constructor] [reducible] (G : Type) (H : add_inf_group G) :
|
||||
AddInfGroup :=
|
||||
InfGroup.mk G H
|
||||
|
@ -154,29 +177,40 @@ InfGroup.mk G H
|
|||
definition AddInfGroup.struct [reducible] (G : AddInfGroup) : add_inf_group G :=
|
||||
InfGroup.struct G
|
||||
|
||||
attribute AddInfGroup.struct InfGroup.struct [instance] [priority 2000]
|
||||
attribute algebra._trans_of_pType_of_AddInfGroup [unfold 1]
|
||||
|
||||
structure AbInfGroup :=
|
||||
(carrier : Type) (struct : ab_inf_group carrier)
|
||||
(carrier : Type) (struct' : ab_inf_group carrier)
|
||||
|
||||
attribute AbInfGroup.carrier [coercion]
|
||||
attribute AbInfGroup.struct' [instance]
|
||||
|
||||
section
|
||||
local attribute AbInfGroup.carrier [coercion]
|
||||
definition InfGroup_of_AbInfGroup [coercion] [constructor] (G : AbInfGroup) : InfGroup :=
|
||||
InfGroup.mk G _
|
||||
end
|
||||
|
||||
definition AbInfGroup.struct [instance] [priority 2000] (G : AbInfGroup) : ab_inf_group G :=
|
||||
AbInfGroup.struct' G
|
||||
|
||||
attribute algebra._trans_of_InfGroup_of_AbInfGroup_1 [constructor]
|
||||
attribute algebra._trans_of_InfGroup_of_AbInfGroup [unfold 1]
|
||||
|
||||
definition AddAbInfGroup : Type := AbInfGroup
|
||||
|
||||
definition AddInfGroup_of_AddAbInfGroup [coercion] [constructor] (G : AddAbInfGroup) : AddInfGroup :=
|
||||
InfGroup_of_AbInfGroup G
|
||||
|
||||
definition AddAbInfGroup.struct [reducible] [instance] [priority 2000] (G : AddAbInfGroup) :
|
||||
add_ab_inf_group G :=
|
||||
AbInfGroup.struct G
|
||||
|
||||
definition AddAbInfGroup.mk [constructor] [reducible] (G : Type) (H : add_ab_inf_group G) :
|
||||
AddAbInfGroup :=
|
||||
AbInfGroup.mk G H
|
||||
|
||||
definition AddAbInfGroup.struct [reducible] (G : AddAbInfGroup) : add_ab_inf_group G :=
|
||||
AbInfGroup.struct G
|
||||
|
||||
attribute AddAbInfGroup.struct AbInfGroup.struct [instance] [priority 2000]
|
||||
|
||||
definition InfGroup_of_AbInfGroup [coercion] [constructor] (G : AbInfGroup) : InfGroup :=
|
||||
InfGroup.mk G _
|
||||
|
||||
attribute algebra._trans_of_InfGroup_of_AbInfGroup_1 [constructor]
|
||||
attribute algebra._trans_of_InfGroup_of_AbInfGroup [unfold 1]
|
||||
attribute algebra._trans_of_AddInfGroup_of_AddAbInfGroup_1 [constructor]
|
||||
attribute algebra._trans_of_AddInfGroup_of_AddAbInfGroup [unfold 1]
|
||||
|
||||
definition InfGroup_of_Group [constructor] (G : Group) : InfGroup :=
|
||||
InfGroup.mk G _
|
||||
|
@ -190,4 +224,11 @@ AbInfGroup.mk G _
|
|||
definition AddAbInfGroup_of_AddAbGroup [constructor] (G : AddAbGroup) : AddAbInfGroup :=
|
||||
AddAbInfGroup.mk G _
|
||||
|
||||
/- rings -/
|
||||
structure Ring :=
|
||||
(carrier : Type) (struct : ring carrier)
|
||||
|
||||
attribute Ring.carrier [coercion]
|
||||
attribute Ring.struct [instance]
|
||||
|
||||
end algebra
|
||||
|
|
|
@ -48,10 +48,10 @@ namespace category
|
|||
|
||||
local attribute is_equiv_iso_of_equiv [instance]
|
||||
|
||||
definition iso_of_eq_eq_compose (A B : Set) : @iso_of_eq _ _ A B =
|
||||
definition iso_of_eq_eq_compose (A B : Set) : @iso_of_eq _ _ A B ~
|
||||
@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
||||
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B :=
|
||||
eq_of_homotopy (λp, eq.rec_on p idp)
|
||||
λp, eq.rec_on p idp
|
||||
|
||||
definition equiv_equiv_iso (A B : set) : (A ≃ B) ≃ (A ≅ B) :=
|
||||
equiv.MK (λf, iso_of_equiv f)
|
||||
|
@ -75,11 +75,8 @@ namespace category
|
|||
(@is_equiv_subtype_eq_inv _ _ _ _ _))
|
||||
!univalence)
|
||||
!is_equiv_iso_of_equiv,
|
||||
let H₂ := (iso_of_eq_eq_compose A B)⁻¹ in
|
||||
begin
|
||||
rewrite H₂ at H₁,
|
||||
assumption
|
||||
end
|
||||
is_equiv.homotopy_closed _ (iso_of_eq_eq_compose A B)⁻¹ʰᵗʸ
|
||||
|
||||
end set
|
||||
|
||||
definition category_Set [instance] [constructor] : category Set :=
|
||||
|
|
|
@ -18,10 +18,6 @@ namespace group
|
|||
definition Group.struct' [instance] [reducible] (G : Group) : group G :=
|
||||
Group.struct G
|
||||
|
||||
definition ab_group_Group_of_AbGroup [instance] [constructor] [priority 900]
|
||||
(G : AbGroup) : ab_group (Group_of_AbGroup G) :=
|
||||
begin esimp, exact _ end
|
||||
|
||||
definition ab_group_pSet_of_Group [instance] (G : AbGroup) : ab_group (pSet_of_Group G) :=
|
||||
AbGroup.struct G
|
||||
|
||||
|
@ -29,74 +25,21 @@ namespace group
|
|||
group (pSet_of_Group G) :=
|
||||
Group.struct G
|
||||
|
||||
/- group homomorphisms -/
|
||||
/-
|
||||
definition is_homomorphism [class] [reducible]
|
||||
{G₁ G₂ : Type} [has_mul G₁] [has_mul G₂] (φ : G₁ → G₂) : Type :=
|
||||
Π(g h : G₁), φ (g * h) = φ g * φ h
|
||||
/- left and right actions -/
|
||||
definition is_equiv_mul_right [constructor] {A : Group} (a : A) : is_equiv (λb, b * a) :=
|
||||
adjointify _ (λb : A, b * a⁻¹) (λb, !inv_mul_cancel_right) (λb, !mul_inv_cancel_right)
|
||||
|
||||
section
|
||||
variables {G G₁ G₂ G₃ : Type} {g h : G₁} (ψ : G₂ → G₃) {φ₁ φ₂ : G₁ → G₂} (φ : G₁ → G₂)
|
||||
[group G] [group G₁] [group G₂] [group G₃]
|
||||
[is_homomorphism ψ] [is_homomorphism φ₁] [is_homomorphism φ₂] [is_homomorphism φ]
|
||||
definition right_action [constructor] {A : Group} (a : A) : A ≃ A :=
|
||||
equiv.mk _ (is_equiv_mul_right a)
|
||||
|
||||
definition respect_mul {G₁ G₂ : Type} [has_mul G₁] [has_mul G₂] (φ : G₁ → G₂)
|
||||
[is_homomorphism φ] : Π(g h : G₁), φ (g * h) = φ g * φ h :=
|
||||
by assumption
|
||||
definition is_equiv_add_right [constructor] {A : AddGroup} (a : A) : is_equiv (λb, b + a) :=
|
||||
adjointify _ (λb : A, b - a) (λb, !neg_add_cancel_right) (λb, !add_neg_cancel_right)
|
||||
|
||||
theorem respect_one /- φ -/ : φ 1 = 1 :=
|
||||
mul.right_cancel
|
||||
(calc
|
||||
φ 1 * φ 1 = φ (1 * 1) : respect_mul φ
|
||||
... = φ 1 : ap φ !one_mul
|
||||
... = 1 * φ 1 : one_mul)
|
||||
definition add_right_action [constructor] {A : AddGroup} (a : A) : A ≃ A :=
|
||||
equiv.mk _ (is_equiv_add_right a)
|
||||
|
||||
theorem respect_inv /- φ -/ (g : G₁) : φ g⁻¹ = (φ g)⁻¹ :=
|
||||
eq_inv_of_mul_eq_one (!respect_mul⁻¹ ⬝ ap φ !mul.left_inv ⬝ !respect_one)
|
||||
/- homomorphisms -/
|
||||
|
||||
definition is_embedding_homomorphism /- φ -/ (H : Π{g}, φ g = 1 → g = 1) : is_embedding φ :=
|
||||
begin
|
||||
apply function.is_embedding_of_is_injective,
|
||||
intro g g' p,
|
||||
apply eq_of_mul_inv_eq_one,
|
||||
apply H,
|
||||
refine !respect_mul ⬝ _,
|
||||
rewrite [respect_inv φ, p],
|
||||
apply mul.right_inv
|
||||
end
|
||||
|
||||
definition is_homomorphism_compose {ψ : G₂ → G₃} {φ : G₁ → G₂}
|
||||
(H1 : is_homomorphism ψ) (H2 : is_homomorphism φ) : is_homomorphism (ψ ∘ φ) :=
|
||||
λg h, ap ψ !respect_mul ⬝ !respect_mul
|
||||
|
||||
definition is_homomorphism_id (G : Type) [group G] : is_homomorphism (@id G) :=
|
||||
λg h, idp
|
||||
|
||||
end
|
||||
|
||||
section additive
|
||||
|
||||
definition is_add_homomorphism [class] [reducible] {G₁ G₂ : Type} [has_add G₁] [has_add G₂]
|
||||
(φ : G₁ → G₂) : Type :=
|
||||
Π(g h : G₁), φ (g + h) = φ g + φ h
|
||||
|
||||
variables {G₁ G₂ : Type} (φ : G₁ → G₂) [add_group G₁] [add_group G₂] [is_add_homomorphism φ]
|
||||
|
||||
definition respect_add /- φ -/ : Π(g h : G₁), φ (g + h) = φ g + φ h :=
|
||||
by assumption
|
||||
|
||||
theorem respect_zero /- φ -/ : φ 0 = 0 :=
|
||||
add.right_cancel
|
||||
(calc
|
||||
φ 0 + φ 0 = φ (0 + 0) : respect_add φ
|
||||
... = φ 0 : ap φ !zero_add
|
||||
... = 0 + φ 0 : zero_add)
|
||||
|
||||
theorem respect_neg /- φ -/ (g : G₁) : φ (-g) = -(φ g) :=
|
||||
eq_neg_of_add_eq_zero (!respect_add⁻¹ ⬝ ap φ !add.left_inv ⬝ !respect_zero)
|
||||
|
||||
end additive
|
||||
-/
|
||||
structure homomorphism (G₁ G₂ : Group) : Type :=
|
||||
(φ : G₁ → G₂)
|
||||
(p : is_mul_hom φ)
|
||||
|
@ -277,33 +220,102 @@ namespace group
|
|||
infixl ` ⬝gp `:75 := isomorphism.trans_eq
|
||||
infixl ` ⬝pg `:75 := isomorphism.eq_trans
|
||||
|
||||
definition pmap_of_isomorphism [constructor] (φ : G₁ ≃g G₂) :
|
||||
G₁ →* G₂ :=
|
||||
definition pmap_of_isomorphism [constructor] (φ : G₁ ≃g G₂) : G₁ →* G₂ :=
|
||||
pequiv_of_isomorphism φ
|
||||
|
||||
/- category of groups -/
|
||||
definition to_fun_isomorphism_trans {G H K : Group} (φ : G ≃g H) (ψ : H ≃g K) :
|
||||
φ ⬝g ψ ~ ψ ∘ φ :=
|
||||
by reflexivity
|
||||
|
||||
section
|
||||
open category
|
||||
definition precategory_group [constructor] : precategory Group :=
|
||||
precategory.mk homomorphism
|
||||
@homomorphism_compose
|
||||
@homomorphism_id
|
||||
(λG₁ G₂ G₃ G₄ φ₃ φ₂ φ₁, homomorphism_eq (λg, idp))
|
||||
(λG₁ G₂ φ, homomorphism_eq (λg, idp))
|
||||
(λG₁ G₂ φ, homomorphism_eq (λg, idp))
|
||||
definition add_homomorphism (G H : AddGroup) : Type := homomorphism G H
|
||||
infix ` →a `:55 := add_homomorphism
|
||||
|
||||
definition agroup_fun [coercion] [unfold 3] [reducible] {G H : AddGroup} (φ : G →a H) : G → H :=
|
||||
φ
|
||||
|
||||
definition add_homomorphism.struct [instance] {G H : AddGroup} (φ : G →a H) : is_add_hom φ :=
|
||||
homomorphism.addstruct φ
|
||||
|
||||
definition add_homomorphism.mk [constructor] {G H : AddGroup} (φ : G → H) (h : is_add_hom φ) : G →g H :=
|
||||
homomorphism.mk φ h
|
||||
|
||||
definition add_homomorphism_compose [constructor] [trans] {G₁ G₂ G₃ : AddGroup}
|
||||
(ψ : G₂ →a G₃) (φ : G₁ →a G₂) : G₁ →a G₃ :=
|
||||
add_homomorphism.mk (ψ ∘ φ) (is_add_hom_compose _ _)
|
||||
|
||||
definition add_homomorphism_id [constructor] [refl] (G : AddGroup) : G →a G :=
|
||||
add_homomorphism.mk (@id G) (is_add_hom_id G)
|
||||
|
||||
abbreviation aid [constructor] := @add_homomorphism_id
|
||||
infixr ` ∘a `:75 := add_homomorphism_compose
|
||||
|
||||
definition to_respect_add' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) (g h : H₁) : χ (g + h) = χ g + χ h :=
|
||||
respect_add χ g h
|
||||
|
||||
theorem to_respect_zero' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) : χ 0 = 0 :=
|
||||
respect_zero χ
|
||||
|
||||
theorem to_respect_neg' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) (g : H₁) : χ (-g) = -(χ g) :=
|
||||
respect_neg χ g
|
||||
|
||||
definition homomorphism_add [constructor] {G H : AddAbGroup} (φ ψ : G →a H) : G →a H :=
|
||||
add_homomorphism.mk (λg, φ g + ψ g)
|
||||
abstract begin
|
||||
intro g g', refine ap011 add !to_respect_add' !to_respect_add' ⬝ _,
|
||||
refine !add.assoc ⬝ ap (add _) (!add.assoc⁻¹ ⬝ ap (λx, x + _) !add.comm ⬝ !add.assoc) ⬝ !add.assoc⁻¹
|
||||
end end
|
||||
|
||||
definition homomorphism_mul [constructor] {G H : AbGroup} (φ ψ : G →g H) : G →g H :=
|
||||
homomorphism.mk (λg, φ g * ψ g) (to_respect_add (homomorphism_add φ ψ))
|
||||
|
||||
definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G :=
|
||||
begin
|
||||
fapply phomotopy_of_homotopy, reflexivity
|
||||
end
|
||||
|
||||
-- TODO
|
||||
-- definition category_group : category Group :=
|
||||
-- category.mk precategory_group
|
||||
-- begin
|
||||
-- intro G₁ G₂,
|
||||
-- fapply adjointify,
|
||||
-- { intro φ, fapply Group_eq, },
|
||||
-- { },
|
||||
-- { }
|
||||
-- end
|
||||
definition pmap_of_homomorphism_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H)
|
||||
: pmap_of_homomorphism (ψ ∘g φ) ~* pmap_of_homomorphism ψ ∘* pmap_of_homomorphism φ :=
|
||||
begin
|
||||
fapply phomotopy_of_homotopy, reflexivity
|
||||
end
|
||||
|
||||
definition pmap_of_homomorphism_phomotopy {G H : Group} {φ ψ : G →g H} (H : φ ~ ψ)
|
||||
: pmap_of_homomorphism φ ~* pmap_of_homomorphism ψ :=
|
||||
begin
|
||||
fapply phomotopy_of_homotopy, exact H
|
||||
end
|
||||
|
||||
definition pequiv_of_isomorphism_trans {G₁ G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₂) :
|
||||
pequiv_of_isomorphism (φ ⬝g ψ) ~* pequiv_of_isomorphism ψ ∘* pequiv_of_isomorphism φ :=
|
||||
begin
|
||||
apply phomotopy_of_homotopy, reflexivity
|
||||
end
|
||||
|
||||
definition isomorphism_eq {G H : Group} {φ ψ : G ≃g H} (p : φ ~ ψ) : φ = ψ :=
|
||||
begin
|
||||
induction φ with φ φe, induction ψ with ψ ψe,
|
||||
exact apd011 isomorphism.mk (homomorphism_eq p) !is_prop.elimo
|
||||
end
|
||||
|
||||
definition is_set_isomorphism [instance] (G H : Group) : is_set (G ≃g H) :=
|
||||
begin
|
||||
have H : G ≃g H ≃ Σ(f : G →g H), is_equiv f,
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro φ, induction φ, constructor, assumption },
|
||||
{ intro v, induction v, constructor, assumption },
|
||||
{ intro v, induction v, reflexivity },
|
||||
{ intro φ, induction φ, reflexivity }
|
||||
end,
|
||||
apply is_trunc_equiv_closed_rev, exact H
|
||||
end
|
||||
|
||||
definition trivial_homomorphism (A B : Group) : A →g B :=
|
||||
homomorphism.mk (λa, 1) (λa a', (mul_one 1)⁻¹)
|
||||
|
||||
definition trivial_add_homomorphism (A B : AddGroup) : A →a B :=
|
||||
homomorphism.mk (λa, 0) (λa a', (add_zero 0)⁻¹)
|
||||
|
||||
|
||||
/- given an equivalence A ≃ B we can transport a group structure on A to a group structure on B -/
|
||||
|
||||
|
@ -347,19 +359,43 @@ namespace group
|
|||
|
||||
end
|
||||
|
||||
section
|
||||
variables {A B : Type} (f : A ≃ B) [ab_group A]
|
||||
definition group_equiv_mul_comm (b b' : B) : group_equiv_mul f b b' = group_equiv_mul f b' b :=
|
||||
by rewrite [↑group_equiv_mul, mul.comm]
|
||||
|
||||
definition ab_group_equiv_closed : ab_group B :=
|
||||
⦃ab_group, group_equiv_closed f,
|
||||
mul_comm := group_equiv_mul_comm f⦄
|
||||
end
|
||||
|
||||
variable (G)
|
||||
|
||||
/- the trivial group -/
|
||||
open unit
|
||||
--rename: group_unit
|
||||
definition trivial_group [constructor] : group unit :=
|
||||
definition group_unit [constructor] : group unit :=
|
||||
group.mk _ (λx y, star) (λx y z, idp) star (unit.rec idp) (unit.rec idp) (λx, star) (λx, idp)
|
||||
|
||||
--rename trivial_group
|
||||
definition Trivial_group [constructor] : Group :=
|
||||
Group.mk _ trivial_group
|
||||
definition ab_group_unit [constructor] : ab_group unit :=
|
||||
⦃ab_group, group_unit, mul_comm := λx y, idp⦄
|
||||
|
||||
abbreviation G0 := Trivial_group
|
||||
definition trivial_group [constructor] : Group :=
|
||||
Group.mk _ group_unit
|
||||
|
||||
abbreviation G0 := trivial_group
|
||||
|
||||
definition AbGroup_of_Group.{u} (G : Group.{u}) (H : Π x y : G, x * y = y * x) : AbGroup.{u} :=
|
||||
begin
|
||||
induction G,
|
||||
fapply AbGroup.mk,
|
||||
assumption,
|
||||
exact ⦃ab_group, struct', mul_comm := H⦄
|
||||
end
|
||||
|
||||
definition trivial_ab_group : AbGroup.{0} :=
|
||||
begin
|
||||
fapply AbGroup_of_Group trivial_group, intro x y, reflexivity
|
||||
end
|
||||
|
||||
definition trivial_group_of_is_contr [H : is_contr G] : G ≃g G0 :=
|
||||
begin
|
||||
|
@ -368,6 +404,33 @@ namespace group
|
|||
{ intros, reflexivity}
|
||||
end
|
||||
|
||||
definition ab_group_of_is_contr (A : Type) [is_contr A] : ab_group A :=
|
||||
have ab_group unit, from ab_group_unit,
|
||||
ab_group_equiv_closed (equiv_unit_of_is_contr A)⁻¹ᵉ
|
||||
|
||||
definition group_of_is_contr (A : Type) [is_contr A] : group A :=
|
||||
have ab_group A, from ab_group_of_is_contr A, by apply _
|
||||
|
||||
definition ab_group_lift_unit : ab_group (lift unit) :=
|
||||
ab_group_of_is_contr (lift unit)
|
||||
|
||||
definition trivial_ab_group_lift : AbGroup :=
|
||||
AbGroup.mk _ ab_group_lift_unit
|
||||
|
||||
definition from_trivial_ab_group (A : AbGroup) : trivial_ab_group →g A :=
|
||||
trivial_homomorphism trivial_ab_group A
|
||||
|
||||
definition is_embedding_from_trivial_ab_group (A : AbGroup) :
|
||||
is_embedding (from_trivial_ab_group A) :=
|
||||
begin
|
||||
fapply is_embedding_of_is_injective,
|
||||
intro x y p,
|
||||
induction x, induction y, reflexivity
|
||||
end
|
||||
|
||||
definition to_trivial_ab_group (A : AbGroup) : A →g trivial_ab_group :=
|
||||
trivial_homomorphism A trivial_ab_group
|
||||
|
||||
variable {G}
|
||||
|
||||
/-
|
||||
|
|
|
@ -58,11 +58,17 @@ section add_group_A_B
|
|||
have x₁ - x₂ = 0, from H _ this,
|
||||
eq_of_sub_eq_zero this)
|
||||
|
||||
definition eq_zero_of_is_add_hom [add_group B] {f : A → B} [is_add_hom f]
|
||||
definition eq_zero_of_is_add_hom {f : A → B} [is_add_hom f]
|
||||
[is_embedding f] {a : A} (fa0 : f a = 0) :
|
||||
a = 0 :=
|
||||
have f a = f 0, by rewrite [fa0, respect_zero f],
|
||||
show a = 0, from is_injective_of_is_embedding this
|
||||
|
||||
theorem eq_zero_of_eq_zero_of_is_embedding {f : A → B} [is_add_hom f] [is_embedding f]
|
||||
{a : A} (h : f a = 0) : a = 0 :=
|
||||
have f a = f 0, by rewrite [h, respect_zero],
|
||||
show a = 0, from is_injective_of_is_embedding this
|
||||
|
||||
end add_group_A_B
|
||||
|
||||
/- multiplicative structures -/
|
||||
|
|
|
@ -23,6 +23,12 @@ namespace eq
|
|||
definition ab_inf_group_loop [constructor] [instance] (A : Type*) : ab_inf_group (Ω (Ω A)) :=
|
||||
⦃ab_inf_group, inf_group_loop _, mul_comm := eckmann_hilton⦄
|
||||
|
||||
definition inf_group_loopn (n : ℕ) (A : Type*) [H : is_succ n] : inf_group (Ω[n] A) :=
|
||||
by induction H; exact _
|
||||
|
||||
definition ab_inf_group_loopn (n : ℕ) (A : Type*) [H : is_at_least_two n] : ab_inf_group (Ω[n] A) :=
|
||||
by induction H; exact _
|
||||
|
||||
definition gloop [constructor] (A : Type*) : InfGroup :=
|
||||
InfGroup.mk (Ω A) (inf_group_loop A)
|
||||
|
||||
|
@ -124,6 +130,13 @@ namespace eq
|
|||
{ exact homotopy_group_succ_in_con},
|
||||
end
|
||||
|
||||
definition is_contr_homotopy_group_of_is_contr (A : Type*) (n : ℕ) [is_contr A] : is_contr (π[n] A) :=
|
||||
begin
|
||||
apply is_trunc_trunc_of_is_trunc,
|
||||
apply is_contr_loop_of_is_trunc,
|
||||
apply is_trunc_of_is_contr
|
||||
end
|
||||
|
||||
definition homotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B)
|
||||
: π[n] A →* π[n] B :=
|
||||
ptrunc_functor 0 (apn n f)
|
||||
|
@ -195,6 +208,12 @@ namespace eq
|
|||
|
||||
notation `π→g[`:95 n:0 `]`:0 := homotopy_group_homomorphism n
|
||||
|
||||
definition homotopy_group_homomorphism_pcompose (n : ℕ) [H : is_succ n] {A B C : Type*} (g : B →* C)
|
||||
(f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f :=
|
||||
begin
|
||||
induction H with n, exact to_homotopy (homotopy_group_functor_compose (succ n) g f)
|
||||
end
|
||||
|
||||
definition homotopy_group_isomorphism_of_pequiv [constructor] (n : ℕ) {A B : Type*} (f : A ≃* B)
|
||||
: πg[n+1] A ≃g πg[n+1] B :=
|
||||
begin
|
||||
|
|
|
@ -331,6 +331,9 @@ section inf_group
|
|||
⦃ right_cancel_inf_semigroup, s,
|
||||
mul_right_cancel := @mul_right_cancel A s ⦄
|
||||
|
||||
definition one_unique {a : A} (H : Πb, a * b = b) : a = 1 :=
|
||||
!mul_one⁻¹ ⬝ H 1
|
||||
|
||||
end inf_group
|
||||
|
||||
structure ab_inf_group [class] (A : Type) extends inf_group A, comm_inf_monoid A
|
||||
|
@ -533,6 +536,9 @@ section add_inf_group
|
|||
theorem add_eq_of_eq_sub {a b c : A} (H : a = c - b) : a + b = c :=
|
||||
add_eq_of_eq_add_neg H
|
||||
|
||||
definition zero_unique {a : A} (H : Πb, a + b = b) : a = 0 :=
|
||||
!add_zero⁻¹ ⬝ H 0
|
||||
|
||||
end add_inf_group
|
||||
|
||||
definition add_ab_inf_group [class] : Type → Type := ab_inf_group
|
||||
|
|
|
@ -137,6 +137,18 @@ namespace eq
|
|||
ap010 f (ap g p) a = ap010 (λy, f (g y)) p a :=
|
||||
eq.rec_on p idp
|
||||
|
||||
definition ap_eq_ap010 {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a') (b : B) :
|
||||
ap (λa, f a b) p = ap010 f p b :=
|
||||
by reflexivity
|
||||
|
||||
definition ap011_idp {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a') (b : B) :
|
||||
ap011 f p idp = ap010 f p b :=
|
||||
by reflexivity
|
||||
|
||||
definition ap011_flip {A B C : Type} (f : A → B → C) {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
|
||||
ap011 f p q = ap011 (λb a, f a b) q p :=
|
||||
by induction q; induction p; reflexivity
|
||||
|
||||
/- the following theorems are function extentionality for functions with multiple arguments -/
|
||||
|
||||
definition eq_of_homotopy2 {f g : Πa b, C a b} (H : f ~2 g) : f = g :=
|
||||
|
|
|
@ -347,4 +347,42 @@ namespace eq
|
|||
infixr ` ⬝p3 `:75 := eq_concat3
|
||||
infixl ` ⬝3p `:75 := concat3_eq
|
||||
|
||||
definition whisker001 {p₀₀₁' : a₀₀₀ = a₀₀₂} (q : p₀₀₁' = p₀₀₁)
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube (q ⬝ph s₀₁₁) s₂₁₁ (q ⬝ph s₁₀₁) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
by induction q; exact c
|
||||
|
||||
definition whisker021 {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁' = p₀₂₁)
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube (s₀₁₁ ⬝hp q⁻¹) s₂₁₁ s₁₀₁ (q ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ :=
|
||||
by induction q; exact c
|
||||
|
||||
definition whisker021' {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁ = p₀₂₁')
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube (s₀₁₁ ⬝hp q) s₂₁₁ s₁₀₁ (q⁻¹ ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ :=
|
||||
by induction q; exact c
|
||||
|
||||
definition whisker201 {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁' = p₂₀₁)
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube s₀₁₁ (q ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q⁻¹) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
by induction q; exact c
|
||||
|
||||
definition whisker201' {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁ = p₂₀₁')
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube s₀₁₁ (q⁻¹ ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
by induction q; exact c
|
||||
|
||||
definition whisker221 {p₂₂₁' : a₂₂₀ = a₂₂₂} (q : p₂₂₁ = p₂₂₁')
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ (s₁₂₁ ⬝hp q) s₁₁₀ s₁₁₂ :=
|
||||
by induction q; exact c
|
||||
|
||||
definition move221 {p₂₂₁' : a₂₂₀ = a₂₂₂} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁'} (q : p₂₂₁ = p₂₂₁')
|
||||
(c : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube s₀₁₁ s₂₁₁ s₁₀₁ (s₁₂₁ ⬝hp q⁻¹) s₁₁₀ s₁₁₂ :=
|
||||
by induction q; exact c
|
||||
|
||||
definition move201 {p₂₀₁' : a₂₀₀ = a₂₀₂} {s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁'} (q : p₂₀₁' = p₂₀₁)
|
||||
(c : cube s₀₁₁ (q ⬝ph s₂₁₁) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube s₀₁₁ s₂₁₁ (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
by induction q; exact c
|
||||
|
||||
end eq
|
||||
|
|
|
@ -117,6 +117,10 @@ namespace eq
|
|||
apply ap_compose_ap02_constant
|
||||
end
|
||||
|
||||
theorem apd_constant' {A A' : Type} {B : A' → Type} {a₁ a₂ : A} {a' : A'} (b : B a')
|
||||
(p : a₁ = a₂) : apd (λx, b) p = pathover_of_eq p idp :=
|
||||
by induction p; reflexivity
|
||||
|
||||
definition apd_change_path {B : A → Type} {a a₂ : A} (f : Πa, B a) {p p' : a = a₂} (s : p = p')
|
||||
: apd f p' = change_path s (apd f p) :=
|
||||
by induction s; reflexivity
|
||||
|
|
|
@ -10,13 +10,13 @@ open eq equiv is_equiv sigma
|
|||
|
||||
namespace eq
|
||||
|
||||
variables {A B : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A}
|
||||
variables {A B C : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A}
|
||||
/-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
|
||||
{p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
|
||||
/-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
|
||||
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
|
||||
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
|
||||
|
||||
{b : B} {c : C}
|
||||
|
||||
inductive square {A : Type} {a₀₀ : A}
|
||||
: Π{a₂₀ a₀₂ a₂₂ : A}, a₀₀ = a₂₀ → a₀₂ = a₂₂ → a₀₀ = a₀₂ → a₂₀ = a₂₂ → Type :=
|
||||
|
@ -633,4 +633,93 @@ namespace eq
|
|||
induction q, esimp at r, induction r using idp_rec_on, exact hrfl
|
||||
end
|
||||
|
||||
/- some higher coherence conditions -/
|
||||
|
||||
|
||||
theorem whisker_bl_whisker_tl_eq (p : a = a')
|
||||
: whisker_bl p (whisker_tl p ids) = con.right_inv p ⬝ph vrfl :=
|
||||
by induction p; reflexivity
|
||||
|
||||
theorem ap_is_constant_natural_square {g : B → C} {f : A → B} (H : Πa, g (f a) = c) (p : a = a') :
|
||||
(ap_is_constant H p)⁻¹ ⬝ph natural_square H p ⬝hp ap_constant p c =
|
||||
whisker_bl (H a') (whisker_tl (H a) ids) :=
|
||||
begin induction p, esimp, rewrite inv_inv, rewrite whisker_bl_whisker_tl_eq end
|
||||
|
||||
definition inv_ph_eq_of_eq_ph {p : a₀₀ = a₀₂} {r : p₀₁ = p} {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁}
|
||||
{s₁₁' : square p₁₀ p₁₂ p p₂₁} (t : s₁₁ = r ⬝ph s₁₁') : r⁻¹ ⬝ph s₁₁ = s₁₁' :=
|
||||
by induction r; exact t
|
||||
|
||||
-- the following is used for torus.elim_surf
|
||||
theorem whisker_square_aps_eq {f : A → B}
|
||||
{q₁₀ : f a₀₀ = f a₂₀} {q₀₁ : f a₀₀ = f a₀₂} {q₂₁ : f a₂₀ = f a₂₂} {q₁₂ : f a₀₂ = f a₂₂}
|
||||
{r₁₀ : ap f p₁₀ = q₁₀} {r₀₁ : ap f p₀₁ = q₀₁} {r₂₁ : ap f p₂₁ = q₂₁} {r₁₂ : ap f p₁₂ = q₁₂}
|
||||
{s₁₁ : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂} {t₁₁ : square q₁₀ q₁₂ q₀₁ q₂₁}
|
||||
(u : square (ap02 f s₁₁) (eq_of_square t₁₁)
|
||||
(ap_con f p₁₀ p₂₁ ⬝ (r₁₀ ◾ r₂₁)) (ap_con f p₀₁ p₁₂ ⬝ (r₀₁ ◾ r₁₂)))
|
||||
: whisker_square r₁₀ r₁₂ r₀₁ r₂₁ (aps f (square_of_eq s₁₁)) = t₁₁ :=
|
||||
begin
|
||||
induction r₁₀, induction r₀₁, induction r₁₂, induction r₂₁,
|
||||
induction p₁₂, induction p₁₀, induction p₂₁, esimp at *, induction s₁₁, esimp at *,
|
||||
esimp [square_of_eq],
|
||||
apply eq_of_fn_eq_fn !square_equiv_eq, esimp,
|
||||
exact (eq_bot_of_square u)⁻¹
|
||||
end
|
||||
|
||||
definition natural_square_eq {A B : Type} {a a' : A} {f g : A → B} (p : f ~ g) (q : a = a')
|
||||
: natural_square p q = square_of_pathover (apd p q) :=
|
||||
idp
|
||||
|
||||
definition eq_of_square_hrfl_hconcat_eq {A : Type} {a a' : A} {p p' : a = a'} (q : p = p')
|
||||
: eq_of_square (hrfl ⬝hp q⁻¹) = !idp_con ⬝ q :=
|
||||
by induction q; induction p; reflexivity
|
||||
|
||||
definition aps_vrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') :
|
||||
aps f (vrefl p) = vrefl (ap f p) :=
|
||||
by induction p; reflexivity
|
||||
|
||||
definition aps_hrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') :
|
||||
aps f (hrefl p) = hrefl (ap f p) :=
|
||||
by induction p; reflexivity
|
||||
|
||||
-- should the following two equalities be cubes?
|
||||
definition natural_square_ap_fn {A B C : Type} {a a' : A} {g h : A → B} (f : B → C) (p : g ~ h)
|
||||
(q : a = a') : natural_square (λa, ap f (p a)) q =
|
||||
ap_compose f g q ⬝ph (aps f (natural_square p q) ⬝hp (ap_compose f h q)⁻¹) :=
|
||||
begin
|
||||
induction q, exact !aps_vrfl⁻¹
|
||||
end
|
||||
|
||||
definition natural_square_compose {A B C : Type} {a a' : A} {g g' : B → C}
|
||||
(p : g ~ g') (f : A → B) (q : a = a') : natural_square (λa, p (f a)) q =
|
||||
ap_compose g f q ⬝ph (natural_square p (ap f q) ⬝hp (ap_compose g' f q)⁻¹) :=
|
||||
by induction q; reflexivity
|
||||
|
||||
definition natural_square_eq2 {A B : Type} {a a' : A} {f f' : A → B} (p : f ~ f') {q q' : a = a'}
|
||||
(r : q = q') : natural_square p q = ap02 f r ⬝ph (natural_square p q' ⬝hp (ap02 f' r)⁻¹) :=
|
||||
by induction r; reflexivity
|
||||
|
||||
definition natural_square_refl {A B : Type} {a a' : A} (f : A → B) (q : a = a')
|
||||
: natural_square (homotopy.refl f) q = hrfl :=
|
||||
by induction q; reflexivity
|
||||
|
||||
definition aps_eq_hconcat {p₀₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
|
||||
aps f (q ⬝ph s₁₁) = ap02 f q ⬝ph aps f s₁₁ :=
|
||||
by induction q; reflexivity
|
||||
|
||||
definition aps_hconcat_eq {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁' = p₂₁) :
|
||||
aps f (s₁₁ ⬝hp r⁻¹) = aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
|
||||
by induction r; reflexivity
|
||||
|
||||
definition aps_hconcat_eq' {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p₂₁') :
|
||||
aps f (s₁₁ ⬝hp r) = aps f s₁₁ ⬝hp ap02 f r :=
|
||||
by induction r; reflexivity
|
||||
|
||||
definition aps_square_of_eq (f : A → B) (s : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) :
|
||||
aps f (square_of_eq s) = square_of_eq ((ap_con f p₁₀ p₂₁)⁻¹ ⬝ ap02 f s ⬝ ap_con f p₀₁ p₁₂) :=
|
||||
by induction p₁₂; esimp at *; induction s; induction p₂₁; induction p₁₀; reflexivity
|
||||
|
||||
definition aps_eq_hconcat_eq {p₀₁' p₂₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
|
||||
(r : p₂₁' = p₂₁) : aps f (q ⬝ph s₁₁ ⬝hp r⁻¹) = ap02 f q ⬝ph aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
|
||||
by induction q; induction r; reflexivity
|
||||
|
||||
end eq
|
||||
|
|
|
@ -1,52 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Floris van Doorn
|
||||
|
||||
Coherence conditions for operations on squares
|
||||
-/
|
||||
|
||||
import .square
|
||||
|
||||
open equiv
|
||||
|
||||
namespace eq
|
||||
|
||||
variables {A B C : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A}
|
||||
{f : A → B} {b : B} {c : C}
|
||||
/-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
|
||||
{p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
|
||||
/-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
|
||||
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
|
||||
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
|
||||
|
||||
theorem whisker_bl_whisker_tl_eq (p : a = a')
|
||||
: whisker_bl p (whisker_tl p ids) = con.right_inv p ⬝ph vrfl :=
|
||||
by induction p; reflexivity
|
||||
|
||||
theorem ap_is_constant_natural_square {g : B → C} {f : A → B} (H : Πa, g (f a) = c) (p : a = a') :
|
||||
(ap_is_constant H p)⁻¹ ⬝ph natural_square H p ⬝hp ap_constant p c =
|
||||
whisker_bl (H a') (whisker_tl (H a) ids) :=
|
||||
begin induction p, esimp, rewrite inv_inv, rewrite whisker_bl_whisker_tl_eq end
|
||||
|
||||
definition inv_ph_eq_of_eq_ph {p : a₀₀ = a₀₂} {r : p₀₁ = p} {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁}
|
||||
{s₁₁' : square p₁₀ p₁₂ p p₂₁} (t : s₁₁ = r ⬝ph s₁₁') : r⁻¹ ⬝ph s₁₁ = s₁₁' :=
|
||||
by induction r; exact t
|
||||
|
||||
-- the following is used for torus.elim_surf
|
||||
theorem whisker_square_aps_eq
|
||||
{q₁₀ : f a₀₀ = f a₂₀} {q₀₁ : f a₀₀ = f a₀₂} {q₂₁ : f a₂₀ = f a₂₂} {q₁₂ : f a₀₂ = f a₂₂}
|
||||
{r₁₀ : ap f p₁₀ = q₁₀} {r₀₁ : ap f p₀₁ = q₀₁} {r₂₁ : ap f p₂₁ = q₂₁} {r₁₂ : ap f p₁₂ = q₁₂}
|
||||
{s₁₁ : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂} {t₁₁ : square q₁₀ q₁₂ q₀₁ q₂₁}
|
||||
(u : square (ap02 f s₁₁) (eq_of_square t₁₁)
|
||||
(ap_con f p₁₀ p₂₁ ⬝ (r₁₀ ◾ r₂₁)) (ap_con f p₀₁ p₁₂ ⬝ (r₀₁ ◾ r₁₂)))
|
||||
: whisker_square r₁₀ r₁₂ r₀₁ r₂₁ (aps f (square_of_eq s₁₁)) = t₁₁ :=
|
||||
begin
|
||||
induction r₁₀, induction r₀₁, induction r₁₂, induction r₂₁,
|
||||
induction p₁₂, induction p₁₀, induction p₂₁, esimp at *, induction s₁₁, esimp at *,
|
||||
esimp [square_of_eq],
|
||||
apply eq_of_fn_eq_fn !square_equiv_eq, esimp,
|
||||
exact (eq_bot_of_square u)⁻¹
|
||||
end
|
||||
|
||||
end eq
|
118
hott/eq2.hlean
118
hott/eq2.hlean
|
@ -6,8 +6,8 @@ Author: Floris van Doorn
|
|||
Theorems about 2-dimensional paths
|
||||
-/
|
||||
|
||||
import .cubical.square
|
||||
open function
|
||||
import .cubical.square .function
|
||||
open function is_equiv equiv
|
||||
|
||||
namespace eq
|
||||
variables {A B C : Type} {f : A → B} {a a' a₁ a₂ a₃ a₄ : A} {b b' : B}
|
||||
|
@ -141,4 +141,118 @@ namespace eq
|
|||
: whisker_left p q⁻² ⬝ q = con.right_inv p :=
|
||||
by cases q; reflexivity
|
||||
|
||||
definition cast_fn_cast_square {A : Type} {B C : A → Type} (f : Π⦃a⦄, B a → C a) {a₁ a₂ : A}
|
||||
(p : a₁ = a₂) (q : a₂ = a₁) (r : p ⬝ q = idp) (b : B a₁) :
|
||||
cast (ap C q) (f (cast (ap B p) b)) = f b :=
|
||||
have q⁻¹ = p, from inv_eq_of_idp_eq_con r⁻¹,
|
||||
begin induction this, induction q, reflexivity end
|
||||
|
||||
definition ap011_ap_square_right {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a')
|
||||
{b₁ b₂ b₃ : B} {q₁₂ : b₁ = b₂} {q₂₃ : b₂ = b₃} {q₁₃ : b₁ = b₃} (r : q₁₂ ⬝ q₂₃ = q₁₃) :
|
||||
square (ap011 f p q₁₂) (ap (λx, f x b₃) p) (ap (f a) q₁₃) (ap (f a') q₂₃) :=
|
||||
by induction r; induction q₂₃; induction q₁₂; induction p; exact ids
|
||||
|
||||
definition ap011_ap_square_left {A B C : Type} (f : B → A → C) {a a' : A} (p : a = a')
|
||||
{b₁ b₂ b₃ : B} {q₁₂ : b₁ = b₂} {q₂₃ : b₂ = b₃} {q₁₃ : b₁ = b₃} (r : q₁₂ ⬝ q₂₃ = q₁₃) :
|
||||
square (ap011 f q₁₂ p) (ap (f b₃) p) (ap (λx, f x a) q₁₃) (ap (λx, f x a') q₂₃) :=
|
||||
by induction r; induction q₂₃; induction q₁₂; induction p; exact ids
|
||||
|
||||
definition con2_assoc {A : Type} {x y z t : A} {p p' : x = y} {q q' : y = z} {r r' : z = t}
|
||||
(h : p = p') (h' : q = q') (h'' : r = r') :
|
||||
square ((h ◾ h') ◾ h'') (h ◾ (h' ◾ h'')) (con.assoc p q r) (con.assoc p' q' r') :=
|
||||
by induction h; induction h'; induction h''; exact hrfl
|
||||
|
||||
definition con_left_inv_idp {A : Type} {x : A} {p : x = x} (q : p = idp)
|
||||
: con.left_inv p = q⁻² ◾ q :=
|
||||
by cases q; reflexivity
|
||||
|
||||
definition eckmann_hilton_con2 {A : Type} {x : A} {p p' q q': idp = idp :> x = x}
|
||||
(h : p = p') (h' : q = q') : square (h ◾ h') (h' ◾ h) (eckmann_hilton p q) (eckmann_hilton p' q') :=
|
||||
by induction h; induction h'; exact hrfl
|
||||
|
||||
definition ap_con_fn {A B : Type} {a a' : A} {b : B} (g h : A → b = b) (p : a = a') :
|
||||
ap (λa, g a ⬝ h a) p = ap g p ◾ ap h p :=
|
||||
by induction p; reflexivity
|
||||
|
||||
definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X}
|
||||
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
|
||||
by induction p; reflexivity
|
||||
|
||||
definition ap_is_weakly_constant {A B : Type} {f : A → B}
|
||||
(h : is_weakly_constant f) {a a' : A} (p : a = a') : ap f p = (h a a)⁻¹ ⬝ h a a' :=
|
||||
by induction p; exact !con.left_inv⁻¹
|
||||
|
||||
definition ap_is_constant_idp {A B : Type} {f : A → B} {b : B} (p : Πa, f a = b) {a : A} (q : a = a)
|
||||
(r : q = idp) : ap_is_constant p q = ap02 f r ⬝ (con.right_inv (p a))⁻¹ :=
|
||||
by cases r; exact !idp_con⁻¹
|
||||
|
||||
definition con_right_inv_natural {A : Type} {a a' : A} {p p' : a = a'} (q : p = p') :
|
||||
con.right_inv p = q ◾ q⁻² ⬝ con.right_inv p' :=
|
||||
by induction q; induction p; reflexivity
|
||||
|
||||
definition whisker_right_ap {A B : Type} {a a' : A}{b₁ b₂ b₃ : B} (q : b₂ = b₃) (f : A → b₁ = b₂)
|
||||
(p : a = a') : whisker_right q (ap f p) = ap (λa, f a ⬝ q) p :=
|
||||
by induction p; reflexivity
|
||||
|
||||
definition ap02_ap_constant {A B C : Type} {a a' : A} (f : B → C) (b : B) (p : a = a') :
|
||||
square (ap_constant p (f b)) (ap02 f (ap_constant p b)) (ap_compose f (λx, b) p) idp :=
|
||||
by induction p; exact ids
|
||||
|
||||
definition ap_constant_compose {A B C : Type} {a a' : A} (c : C) (f : A → B) (p : a = a') :
|
||||
square (ap_constant p c) (ap_constant (ap f p) c) (ap_compose (λx, c) f p) idp :=
|
||||
by induction p; exact ids
|
||||
|
||||
definition ap02_constant {A B : Type} {a a' : A} (b : B) {p p' : a = a'}
|
||||
(q : p = p') : square (ap_constant p b) (ap_constant p' b) (ap02 (λx, b) q) idp :=
|
||||
by induction q; exact vrfl
|
||||
|
||||
section hsquare
|
||||
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
|
||||
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
|
||||
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
|
||||
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
|
||||
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
|
||||
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
|
||||
|
||||
definition hsquare [reducible] (f₁₀ : A₀₀ → A₂₀) (f₁₂ : A₀₂ → A₂₂)
|
||||
(f₀₁ : A₀₀ → A₀₂) (f₂₁ : A₂₀ → A₂₂) : Type :=
|
||||
f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁
|
||||
|
||||
definition hsquare_of_homotopy (p : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||||
p
|
||||
|
||||
definition homotopy_of_hsquare (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁ :=
|
||||
p
|
||||
|
||||
definition homotopy_top_of_hsquare {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ :=
|
||||
homotopy_inv_of_homotopy_post _ _ _ p
|
||||
|
||||
definition homotopy_top_of_hsquare' [is_equiv f₂₁] (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ :=
|
||||
homotopy_inv_of_homotopy_post _ _ _ p
|
||||
|
||||
definition hhconcat (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
||||
hsquare (f₃₀ ∘ f₁₀) (f₃₂ ∘ f₁₂) f₀₁ f₄₁ :=
|
||||
hwhisker_right f₁₀ q ⬝hty hwhisker_left f₃₂ p
|
||||
|
||||
definition hvconcat (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||||
hsquare f₁₀ f₁₄ (f₀₃ ∘ f₀₁) (f₂₃ ∘ f₂₁) :=
|
||||
(hhconcat p⁻¹ʰᵗʸ q⁻¹ʰᵗʸ)⁻¹ʰᵗʸ
|
||||
|
||||
definition hhinverse {f₁₀ : A₀₀ ≃ A₂₀} {f₁₂ : A₀₂ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
hsquare f₁₀⁻¹ᵉ f₁₂⁻¹ᵉ f₂₁ f₀₁ :=
|
||||
λb, eq_inv_of_eq ((p (f₁₀⁻¹ᵉ b))⁻¹ ⬝ ap f₂₁ (to_right_inv f₁₀ b))
|
||||
|
||||
definition hvinverse {f₀₁ : A₀₀ ≃ A₀₂} {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
hsquare f₁₂ f₁₀ f₀₁⁻¹ᵉ f₂₁⁻¹ᵉ :=
|
||||
(hhinverse p⁻¹ʰᵗʸ)⁻¹ʰᵗʸ
|
||||
|
||||
infix ` ⬝htyh `:73 := hhconcat
|
||||
infix ` ⬝htyv `:73 := hvconcat
|
||||
postfix `⁻¹ʰᵗʸʰ`:(max+1) := hhinverse
|
||||
postfix `⁻¹ʰᵗʸᵛ`:(max+1) := hvinverse
|
||||
|
||||
end hsquare
|
||||
|
||||
end eq
|
||||
|
|
|
@ -7,24 +7,18 @@ Ported from Coq HoTT
|
|||
Theorems about embeddings and surjections
|
||||
-/
|
||||
|
||||
import hit.trunc types.equiv cubical.square
|
||||
import hit.trunc types.equiv cubical.square types.nat
|
||||
|
||||
open equiv sigma sigma.ops eq trunc is_trunc pi is_equiv fiber prod
|
||||
open equiv sigma sigma.ops eq trunc is_trunc pi is_equiv fiber prod pointed nat
|
||||
|
||||
variables {A B C : Type} (f : A → B) {b : B}
|
||||
variables {A B C : Type} (f f' : A → B) {b : B}
|
||||
|
||||
/- the image of a map is the (-1)-truncated fiber -/
|
||||
definition image' [constructor] (f : A → B) (b : B) : Type := ∥ fiber f b ∥
|
||||
definition is_prop_image' [instance] (f : A → B) (b : B) : is_prop (image' f b) := !is_trunc_trunc
|
||||
definition image [constructor] (f : A → B) (b : B) : Prop := Prop.mk (image' f b) _
|
||||
|
||||
definition image.mk [constructor] {f : A → B} {b : B} (a : A) (p : f a = b)
|
||||
: image f b :=
|
||||
tr (fiber.mk a p)
|
||||
|
||||
protected definition image.rec [unfold 8] [recursor 8] {f : A → B} {b : B} {P : image' f b → Type}
|
||||
[H : Πv, is_prop (P v)] (H : Π(a : A) (p : f a = b), P (image.mk a p)) (v : image' f b) : P v :=
|
||||
begin unfold [image'] at *, induction v with v, induction v with a p, exact H a p end
|
||||
definition total_image {A B : Type} (f : A → B) : Type := sigma (image f)
|
||||
|
||||
definition is_embedding [class] (f : A → B) := Π(a a' : A), is_equiv (ap f : a = a' → f a = f a')
|
||||
|
||||
|
@ -50,6 +44,33 @@ structure is_conditionally_constant [class] (f : A → B) :=
|
|||
(g : ∥A∥ → B)
|
||||
(eq : Π(a : A), f a = g (tr a))
|
||||
|
||||
section image
|
||||
protected definition image.mk [constructor] {f : A → B} {b : B} (a : A) (p : f a = b)
|
||||
: image f b :=
|
||||
tr (fiber.mk a p)
|
||||
|
||||
protected definition image.rec [unfold 8] [recursor 8] {f : A → B} {b : B} {P : image' f b → Type}
|
||||
[H : Πv, is_prop (P v)] (H : Π(a : A) (p : f a = b), P (image.mk a p)) (v : image' f b) : P v :=
|
||||
begin unfold [image'] at *, induction v with v, induction v with a p, exact H a p end
|
||||
|
||||
definition image.elim {A B : Type} {f : A → B} {C : Type} [is_prop C] {b : B}
|
||||
(H : image f b) (H' : ∀ (a : A), f a = b → C) : C :=
|
||||
begin
|
||||
refine (trunc.elim _ H),
|
||||
intro H'', cases H'' with a Ha, exact H' a Ha
|
||||
end
|
||||
|
||||
definition image.equiv_exists {A B : Type} {f : A → B} {b : B} : image f b ≃ ∃ a, f a = b :=
|
||||
trunc_equiv_trunc _ (fiber.sigma_char _ _)
|
||||
|
||||
definition image_pathover {f : A → B} {x y : B} (p : x = y) (u : image f x) (v : image f y) :
|
||||
u =[p] v :=
|
||||
!is_prop.elimo
|
||||
|
||||
/- total_image.elim_set is in hit.prop_trunc to avoid dependency cycle -/
|
||||
|
||||
end image
|
||||
|
||||
namespace function
|
||||
|
||||
abbreviation sect [unfold 4] := @is_retraction.sect
|
||||
|
@ -304,6 +325,51 @@ namespace function
|
|||
: is_embedding (@pr1 A B) :=
|
||||
λv v', to_is_equiv (sigma_eq_equiv v v' ⬝e !sigma_equiv_of_is_contr_right)
|
||||
|
||||
variables {f f'}
|
||||
definition is_embedding_homotopy_closed (p : f ~ f') (H : is_embedding f) : is_embedding f' :=
|
||||
begin
|
||||
intro a a', fapply is_equiv_of_equiv_of_homotopy,
|
||||
exact equiv.mk (ap f) _ ⬝e equiv_eq_closed_left _ (p a) ⬝e equiv_eq_closed_right _ (p a'),
|
||||
intro q, esimp, exact (eq_bot_of_square (transpose (natural_square p q)))⁻¹
|
||||
end
|
||||
|
||||
definition is_embedding_homotopy_closed_rev (p : f' ~ f) (H : is_embedding f) : is_embedding f' :=
|
||||
is_embedding_homotopy_closed p⁻¹ʰᵗʸ H
|
||||
|
||||
definition is_surjective_homotopy_closed (p : f ~ f') (H : is_surjective f) : is_surjective f' :=
|
||||
begin
|
||||
intro b, induction H b with a q,
|
||||
exact image.mk a ((p a)⁻¹ ⬝ q)
|
||||
end
|
||||
|
||||
definition is_surjective_homotopy_closed_rev (p : f' ~ f) (H : is_surjective f) :
|
||||
is_surjective f' :=
|
||||
is_surjective_homotopy_closed p⁻¹ʰᵗʸ H
|
||||
|
||||
definition is_equiv_ap1_gen_of_is_embedding {A B : Type} (f : A → B) [is_embedding f]
|
||||
{a a' : A} {b b' : B} (q : f a = b) (q' : f a' = b') : is_equiv (ap1_gen f q q') :=
|
||||
begin
|
||||
induction q, induction q',
|
||||
exact is_equiv.homotopy_closed _ (ap1_gen_idp_left f)⁻¹ʰᵗʸ,
|
||||
end
|
||||
|
||||
definition is_equiv_ap1_of_is_embedding {A B : Type*} (f : A →* B) [is_embedding f] :
|
||||
is_equiv (Ω→ f) :=
|
||||
is_equiv_ap1_gen_of_is_embedding f (respect_pt f) (respect_pt f)
|
||||
|
||||
definition loop_pequiv_loop_of_is_embedding [constructor] {A B : Type*} (f : A →* B)
|
||||
[is_embedding f] : Ω A ≃* Ω B :=
|
||||
pequiv_of_pmap (Ω→ f) (is_equiv_ap1_of_is_embedding f)
|
||||
|
||||
definition loopn_pequiv_loopn_of_is_embedding [constructor] (n : ℕ) [H : is_succ n]
|
||||
{A B : Type*} (f : A →* B) [is_embedding f] : Ω[n] A ≃* Ω[n] B :=
|
||||
begin
|
||||
induction H with n,
|
||||
exact !loopn_succ_in ⬝e*
|
||||
loopn_pequiv_loopn n (loop_pequiv_loop_of_is_embedding f) ⬝e*
|
||||
!loopn_succ_in⁻¹ᵉ*
|
||||
end
|
||||
|
||||
/-
|
||||
The definitions
|
||||
is_surjective_of_is_equiv
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import function types.trunc hit.colimit homotopy.connectedness --types.nat.hott hit.trunc cubical.square
|
||||
import types.trunc hit.colimit homotopy.connectedness
|
||||
|
||||
open eq is_trunc unit quotient seq_colim pi nat equiv sum algebra is_conn function
|
||||
|
||||
|
@ -409,7 +409,7 @@ open prop_trunc trunc
|
|||
-- Corollaries for the actual truncation.
|
||||
namespace is_trunc
|
||||
local attribute is_prop_trunc_one_step_tr [instance]
|
||||
definition is_prop.elim_set {A : Type} {P : Type} [is_set P] (f : A → P)
|
||||
definition prop_trunc.elim_set [unfold 6] {A : Type} {P : Type} [is_set P] (f : A → P)
|
||||
(p : Πa a', f a = f a') (x : trunc -1 A) : P :=
|
||||
begin
|
||||
have y : trunc 0 (one_step_tr A),
|
||||
|
@ -420,8 +420,32 @@ namespace is_trunc
|
|||
{ exact p a a'}
|
||||
end
|
||||
|
||||
definition is_prop.elim_set_tr {A : Type} {P : Type} {H : is_set P} (f : A → P)
|
||||
(p : Πa a', f a = f a') (a : A) : is_prop.elim_set f p (tr a) = f a :=
|
||||
definition prop_trunc.elim_set_tr {A : Type} {P : Type} {H : is_set P} (f : A → P)
|
||||
(p : Πa a', f a = f a') (a : A) : prop_trunc.elim_set f p (tr a) = f a :=
|
||||
by reflexivity
|
||||
|
||||
open sigma
|
||||
|
||||
local attribute prop_trunc.elim_set [recursor 6]
|
||||
definition total_image.elim_set [unfold 8]
|
||||
{A B : Type} {f : A → B} {C : Type} [is_set C]
|
||||
(g : A → C) (h : Πa a', f a = f a' → g a = g a') (x : total_image f) : C :=
|
||||
begin
|
||||
induction x with b v,
|
||||
induction v using prop_trunc.elim_set with x x x',
|
||||
{ induction x with a p, exact g a },
|
||||
{ induction x with a p, induction x' with a' p', induction p', exact h _ _ p }
|
||||
end
|
||||
|
||||
definition total_image.rec [unfold 7]
|
||||
{A B : Type} {f : A → B} {C : total_image f → Type} [H : Πx, is_prop (C x)]
|
||||
(g : Πa, C ⟨f a, image.mk a idp⟩)
|
||||
(x : total_image f) : C x :=
|
||||
begin
|
||||
induction x with b v,
|
||||
refine @image.rec _ _ _ _ _ (λv, H ⟨b, v⟩) _ v,
|
||||
intro a p,
|
||||
induction p, exact g a
|
||||
end
|
||||
|
||||
end is_trunc
|
||||
|
|
|
@ -112,6 +112,16 @@ namespace pushout
|
|||
|
||||
variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
|
||||
|
||||
protected theorem elim_inl {P : Type} (Pinl : BL → P) (Pinr : TR → P)
|
||||
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) {b b' : BL} (p : b = b')
|
||||
: ap (pushout.elim Pinl Pinr Pglue) (ap inl p) = ap Pinl p :=
|
||||
!ap_compose⁻¹
|
||||
|
||||
protected theorem elim_inr {P : Type} (Pinl : BL → P) (Pinr : TR → P)
|
||||
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) {b b' : TR} (p : b = b')
|
||||
: ap (pushout.elim Pinl Pinr Pglue) (ap inr p) = ap Pinr p :=
|
||||
!ap_compose⁻¹
|
||||
|
||||
/- The non-dependent universal property -/
|
||||
definition pushout_arrow_equiv (C : Type)
|
||||
: (pushout f g → C) ≃ (Σ(i : BL → C) (j : TR → C), Πc, i (f c) = j (g c)) :=
|
||||
|
|
|
@ -8,7 +8,7 @@ Declaration of set-quotients, i.e. quotient of a mere relation which is then set
|
|||
|
||||
import function algebra.relation types.trunc types.eq hit.quotient
|
||||
|
||||
open eq is_trunc trunc quotient equiv
|
||||
open eq is_trunc trunc quotient equiv is_equiv
|
||||
|
||||
namespace set_quotient
|
||||
section
|
||||
|
@ -86,6 +86,36 @@ namespace set_quotient
|
|||
definition is_surjective_class_of : is_surjective (class_of : A → set_quotient R) :=
|
||||
λx, set_quotient.rec_on x (λa, tr (fiber.mk a idp)) (λa a' r, !is_prop.elimo)
|
||||
|
||||
definition is_prop_set_quotient {A : Type} (R : A → A → Prop) [is_prop A] :
|
||||
is_prop (set_quotient R) :=
|
||||
begin
|
||||
apply is_prop.mk, intro x y,
|
||||
induction x using set_quotient.rec_prop, induction y using set_quotient.rec_prop,
|
||||
exact ap class_of !is_prop.elim
|
||||
end
|
||||
|
||||
local attribute is_prop_set_quotient [instance]
|
||||
definition is_trunc_set_quotient [instance] (n : ℕ₋₂) {A : Type} (R : A → A → Prop) [is_trunc n A] :
|
||||
is_trunc n (set_quotient R) :=
|
||||
begin
|
||||
cases n with n, { apply is_contr_of_inhabited_prop, exact class_of !center },
|
||||
cases n with n, { apply _ },
|
||||
apply is_trunc_succ_succ_of_is_set
|
||||
end
|
||||
|
||||
definition is_equiv_class_of [constructor] {A : Type} [is_set A] (R : A → A → Prop)
|
||||
(p : Π⦃a b⦄, R a b → a = b) : is_equiv (@class_of A R) :=
|
||||
begin
|
||||
fapply adjointify,
|
||||
{ intro x, induction x, exact a, exact p H },
|
||||
{ intro x, induction x using set_quotient.rec_prop, reflexivity },
|
||||
{ intro a, reflexivity }
|
||||
end
|
||||
|
||||
definition equiv_set_quotient [constructor] {A : Type} [is_set A] (R : A → A → Prop)
|
||||
(p : Π⦃a b⦄, R a b → a = b) : A ≃ set_quotient R :=
|
||||
equiv.mk _ (is_equiv_class_of R p)
|
||||
|
||||
/- non-dependent universal property -/
|
||||
|
||||
definition set_quotient_arrow_equiv (B : Type) [H : is_set B] :
|
||||
|
|
|
@ -126,6 +126,10 @@ namespace trunc
|
|||
definition or.intro_left [reducible] [constructor] (x : X) : X ∨ Y := tr (inl x)
|
||||
definition or.intro_right [reducible] [constructor] (y : Y) : X ∨ Y := tr (inr y)
|
||||
|
||||
definition exists.elim {A : Type} {p : A → Type} {B : Type} [is_prop B] (H : Exists p)
|
||||
(H' : ∀ (a : A), p a → B) : B :=
|
||||
trunc.elim (sigma.rec H') H
|
||||
|
||||
definition is_contr_of_merely_prop [H : is_prop A] (aa : merely A) : is_contr A :=
|
||||
is_contr_of_inhabited_prop (trunc.rec_on aa id)
|
||||
|
||||
|
|
|
@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Floris van Doorn
|
||||
-/
|
||||
|
||||
import homotopy.circle eq2 algebra.e_closure cubical.squareover cubical.cube cubical.square2
|
||||
import homotopy.circle eq2 algebra.e_closure cubical.squareover cubical.cube
|
||||
|
||||
open quotient eq circle sum sigma equiv function relation e_closure
|
||||
|
||||
|
|
|
@ -353,4 +353,27 @@ namespace circle
|
|||
definition circle_base_mul [reducible] (x : S¹) : circle_mul base x = x :=
|
||||
idp
|
||||
|
||||
/-
|
||||
Suppose for `f, g : A -> B` we prove a homotopy `H : f ~ g` by induction on the element in `A`.
|
||||
And suppose `p : a = a'` is a path constructor in `A`.
|
||||
Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal
|
||||
to the square which defined H on the path constructor
|
||||
-/
|
||||
|
||||
definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base)
|
||||
(q : square p p (ap f loop) (ap g loop))
|
||||
: natural_square (circle.rec p (eq_pathover q)) loop = q :=
|
||||
begin
|
||||
refine ap square_of_pathover !rec_loop ⬝ _,
|
||||
exact to_right_inv !eq_pathover_equiv_square q
|
||||
end
|
||||
|
||||
definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) :
|
||||
circle.elim a p x = a :=
|
||||
begin
|
||||
induction x,
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r }
|
||||
end
|
||||
|
||||
end circle
|
||||
|
|
|
@ -112,7 +112,7 @@ namespace is_conn
|
|||
apply eq_equiv_eq_symm
|
||||
end,
|
||||
apply @is_trunc_equiv_closed _ _ k e, clear e,
|
||||
apply IH (λb : B, (g b = h b)) (λb, @is_trunc_eq (P b) (n +2+ k) (HP b) (g b) (h b))}
|
||||
apply IH (λb : B, (g b = h b)) (λb, @is_trunc_eq (P b) (n +2+ k) (HP b) (g b) (h b)) }
|
||||
end
|
||||
|
||||
end
|
||||
|
@ -365,6 +365,101 @@ namespace is_conn
|
|||
rewrite -of_nat_add_two, exact _
|
||||
end
|
||||
|
||||
definition is_conn_equiv_closed_rev (n : ℕ₋₂) {A B : Type} (f : A ≃ B) (H : is_conn n B) :
|
||||
is_conn n A :=
|
||||
is_conn_equiv_closed n f⁻¹ᵉ _
|
||||
|
||||
definition is_conn_succ_intro {n : ℕ₋₂} {A : Type} (a : trunc (n.+1) A)
|
||||
(H2 : Π(a a' : A), is_conn n (a = a')) : is_conn (n.+1) A :=
|
||||
begin
|
||||
apply @is_contr_of_inhabited_prop,
|
||||
{ apply is_trunc_succ_intro,
|
||||
refine trunc.rec _, intro a, refine trunc.rec _, intro a',
|
||||
apply is_contr_equiv_closed !tr_eq_tr_equiv⁻¹ᵉ },
|
||||
exact a
|
||||
end
|
||||
|
||||
definition is_conn_pathover (n : ℕ₋₂) {A : Type} {B : A → Type} {a a' : A} (p : a = a') (b : B a)
|
||||
(b' : B a') [is_conn (n.+1) (B a')] : is_conn n (b =[p] b') :=
|
||||
is_conn_equiv_closed_rev n !pathover_equiv_tr_eq _
|
||||
|
||||
open sigma
|
||||
lemma is_conn_sigma [instance] {A : Type} (B : A → Type) (n : ℕ₋₂)
|
||||
[HA : is_conn n A] [HB : Πa, is_conn n (B a)] : is_conn n (Σa, B a) :=
|
||||
begin
|
||||
revert A B HA HB, induction n with n IH: intro A B HA HB,
|
||||
{ apply is_conn_minus_two },
|
||||
apply is_conn_succ_intro,
|
||||
{ induction center (trunc (n.+1) A) with a, induction center (trunc (n.+1) (B a)) with b,
|
||||
exact tr ⟨a, b⟩ },
|
||||
intro a a', refine is_conn_equiv_closed_rev n !sigma_eq_equiv _,
|
||||
apply IH, apply is_conn_eq, intro p, apply is_conn_pathover
|
||||
/- an alternative proof of the successor case -/
|
||||
-- induction center (trunc (n.+1) A) with a₀,
|
||||
-- induction center (trunc (n.+1) (B a₀)) with b₀,
|
||||
-- apply is_contr.mk (tr ⟨a₀, b₀⟩),
|
||||
-- intro ab, induction ab with ab, induction ab with a b,
|
||||
-- induction tr_eq_tr_equiv n a₀ a !is_prop.elim with p, induction p,
|
||||
-- induction tr_eq_tr_equiv n b₀ b !is_prop.elim with q, induction q,
|
||||
-- reflexivity
|
||||
end
|
||||
|
||||
lemma is_conn_prod [instance] (A B : Type) (n : ℕ₋₂) [is_conn n A] [is_conn n B] :
|
||||
is_conn n (A × B) :=
|
||||
is_conn_equiv_closed n !sigma.equiv_prod _
|
||||
|
||||
lemma is_conn_fun_of_is_conn {A B : Type} (n : ℕ₋₂) (f : A → B)
|
||||
[HA : is_conn n A] [HB : is_conn (n.+1) B] : is_conn_fun n f :=
|
||||
λb, is_conn_equiv_closed_rev n !fiber.sigma_char _
|
||||
|
||||
lemma is_conn_pfiber {A B : Type*} (n : ℕ₋₂) (f : A →* B)
|
||||
[HA : is_conn n A] [HB : is_conn (n.+1) B] : is_conn n (pfiber f) :=
|
||||
is_conn_fun_of_is_conn n f pt
|
||||
|
||||
definition is_conn_fun_trunc_elim_of_le {n k : ℕ₋₂} {A B : Type} [is_trunc n B] (f : A → B)
|
||||
(H : k ≤ n) [H2 : is_conn_fun k f] : is_conn_fun k (trunc.elim f : trunc n A → B) :=
|
||||
begin
|
||||
apply is_conn_fun.intro,
|
||||
intro P, have Πb, is_trunc n (P b), from (λb, is_trunc_of_le _ H),
|
||||
fconstructor,
|
||||
{ intro f' b,
|
||||
refine is_conn_fun.elim k H2 _ _ b, intro a, exact f' (tr a) },
|
||||
{ intro f', apply eq_of_homotopy, intro a,
|
||||
induction a with a, esimp, rewrite [is_conn_fun.elim_β] }
|
||||
end
|
||||
|
||||
definition is_conn_fun_trunc_elim_of_ge {n k : ℕ₋₂} {A B : Type} [is_trunc n B] (f : A → B)
|
||||
(H : n ≤ k) [H2 : is_conn_fun k f] : is_conn_fun k (trunc.elim f : trunc n A → B) :=
|
||||
begin
|
||||
apply is_conn_fun_of_is_equiv,
|
||||
have H3 : is_equiv (trunc_functor k f), from !is_equiv_trunc_functor_of_is_conn_fun,
|
||||
have H4 : is_equiv (trunc_functor n f), from is_equiv_trunc_functor_of_le _ H,
|
||||
apply is_equiv_of_equiv_of_homotopy (equiv.mk (trunc_functor n f) _ ⬝e !trunc_equiv),
|
||||
intro x, induction x, reflexivity
|
||||
end
|
||||
|
||||
definition is_conn_fun_trunc_elim {n k : ℕ₋₂} {A B : Type} [is_trunc n B] (f : A → B)
|
||||
[H2 : is_conn_fun k f] : is_conn_fun k (trunc.elim f : trunc n A → B) :=
|
||||
begin
|
||||
eapply algebra.le_by_cases k n: intro H,
|
||||
{ exact is_conn_fun_trunc_elim_of_le f H },
|
||||
{ exact is_conn_fun_trunc_elim_of_ge f H }
|
||||
end
|
||||
|
||||
lemma is_conn_fun_tr (n : ℕ₋₂) (A : Type) : is_conn_fun n (tr : A → trunc n A) :=
|
||||
begin
|
||||
apply is_conn_fun.intro,
|
||||
intro P,
|
||||
fconstructor,
|
||||
{ intro f' b, induction b with a, exact f' a },
|
||||
{ intro f', reflexivity }
|
||||
end
|
||||
|
||||
|
||||
definition is_contr_of_is_conn_of_is_trunc {n : ℕ₋₂} {A : Type} (H : is_trunc n A)
|
||||
(K : is_conn n A) : is_contr A :=
|
||||
is_contr_equiv_closed (trunc_equiv n A)
|
||||
|
||||
end is_conn
|
||||
|
||||
/-
|
||||
|
|
|
@ -223,6 +223,52 @@ namespace is_trunc
|
|||
cases A with A a, exact H k H'
|
||||
end
|
||||
|
||||
|
||||
|
||||
definition ab_group_homotopy_group_of_is_conn (n : ℕ) (A : Type*) [H : is_conn 1 A] :
|
||||
ab_group (π[n] A) :=
|
||||
begin
|
||||
have is_conn 0 A, from !is_conn_of_is_conn_succ,
|
||||
cases n with n,
|
||||
{ unfold [homotopy_group, ptrunc], apply ab_group_of_is_contr },
|
||||
cases n with n,
|
||||
{ unfold [homotopy_group, ptrunc], apply ab_group_of_is_contr },
|
||||
exact ab_group_homotopy_group n A
|
||||
end
|
||||
|
||||
definition is_contr_of_trivial_homotopy' (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn -1 A]
|
||||
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
|
||||
begin
|
||||
assert aa : trunc -1 A,
|
||||
{ apply center },
|
||||
assert H3 : is_conn 0 A,
|
||||
{ induction aa with a, exact H 0 a },
|
||||
exact is_contr_of_trivial_homotopy n A H
|
||||
end
|
||||
|
||||
definition is_conn_of_trivial_homotopy (n : ℕ₋₂) (m : ℕ) (A : Type) [is_trunc n A] [is_conn 0 A]
|
||||
(H : Π(k : ℕ) a, k ≤ m → is_contr (π[k] (pointed.MK A a))) : is_conn m A :=
|
||||
begin
|
||||
apply is_contr_of_trivial_homotopy_nat m (trunc m A),
|
||||
intro k a H2,
|
||||
induction a with a,
|
||||
apply is_trunc_equiv_closed_rev,
|
||||
exact equiv_of_pequiv (homotopy_group_trunc_of_le (pointed.MK A a) _ _ H2),
|
||||
exact H k a H2
|
||||
end
|
||||
|
||||
definition is_conn_of_trivial_homotopy_pointed (n : ℕ₋₂) (m : ℕ) (A : Type*) [is_trunc n A]
|
||||
(H : Π(k : ℕ), k ≤ m → is_contr (π[k] A)) : is_conn m A :=
|
||||
begin
|
||||
have is_conn 0 A, proof H 0 !zero_le qed,
|
||||
apply is_conn_of_trivial_homotopy n m A,
|
||||
intro k a H2, revert a, apply is_conn.elim -1,
|
||||
cases A with A a, exact H k H2
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
definition is_conn_fun_of_equiv_on_homotopy_groups.{u} (n : ℕ) {A B : Type.{u}} (f : A → B)
|
||||
[is_equiv (trunc_functor 0 f)]
|
||||
(H1 : Πa k, k ≤ n → is_equiv (homotopy_group_functor k (pmap_of_map f a)))
|
||||
|
|
|
@ -302,10 +302,17 @@ namespace sphere
|
|||
definition sphere_eq_pbool : S* 0 = pbool :=
|
||||
pType_eq sphere_equiv_bool idp
|
||||
|
||||
definition psphere_pequiv_iterate_psusp (n : ℕ) : psphere n ≃* iterate_psusp n pbool :=
|
||||
begin
|
||||
induction n with n e,
|
||||
{ exact psphere_pequiv_pbool },
|
||||
{ exact psusp_pequiv e }
|
||||
end
|
||||
|
||||
definition psphere_pmap_pequiv' (A : Type*) (n : ℕ) : ppmap (S* n) A ≃* Ω[n] A :=
|
||||
begin
|
||||
revert A, induction n with n IH: intro A,
|
||||
{ refine _ ⬝e* !pmap_pbool_pequiv, exact pequiv_ppcompose_right psphere_pequiv_pbool⁻¹ᵉ* },
|
||||
{ refine _ ⬝e* !ppmap_pbool_pequiv, exact pequiv_ppcompose_right psphere_pequiv_pbool⁻¹ᵉ* },
|
||||
{ refine psusp_adjoint_loop (S* n) A ⬝e* IH (Ω A) ⬝e* !loopn_succ_in⁻¹ᵉ* }
|
||||
end
|
||||
|
||||
|
|
|
@ -226,20 +226,43 @@ namespace susp
|
|||
definition psusp_pequiv [constructor] (f : X ≃* Y) : psusp X ≃* psusp Y :=
|
||||
pequiv_of_equiv (susp.equiv f) idp
|
||||
|
||||
definition psusp_functor_compose (g : Y →* Z) (f : X →* Y)
|
||||
: psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f :=
|
||||
definition psusp_functor_pcompose (g : Y →* Z) (f : X →* Y) :
|
||||
psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro a, induction a,
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x,
|
||||
{ reflexivity },
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover, apply hdeg_square,
|
||||
rewrite [▸*,ap_compose' _ (psusp_functor f)],
|
||||
krewrite +susp.elim_merid } },
|
||||
{ reflexivity }
|
||||
{ apply eq_pathover, apply hdeg_square, esimp,
|
||||
refine !elim_merid ⬝ _ ⬝ (ap_compose (psusp_functor g) _ _)⁻¹ᵖ,
|
||||
refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }},
|
||||
{ reflexivity },
|
||||
end
|
||||
|
||||
-- adjunction from Coq-HoTT
|
||||
definition psusp_functor_phomotopy {f g : X →* Y} (p : f ~* g) :
|
||||
psusp_functor f ~* psusp_functor g :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x,
|
||||
{ reflexivity },
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ !elim_merid⁻¹ᵖ,
|
||||
exact ap merid (p a), }},
|
||||
{ reflexivity },
|
||||
end
|
||||
|
||||
definition psusp_functor_pid (A : Type*) : psusp_functor (pid A) ~* pid (psusp A) :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x,
|
||||
{ reflexivity },
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover_id_right, apply hdeg_square, apply elim_merid }},
|
||||
{ reflexivity },
|
||||
end
|
||||
|
||||
/- adjunction originally ported from Coq-HoTT,
|
||||
but we proved some additional naturality conditions -/
|
||||
|
||||
definition loop_psusp_unit [constructor] (X : Type*) : X →* Ω(psusp X) :=
|
||||
begin
|
||||
|
@ -324,6 +347,28 @@ namespace susp
|
|||
definition loop_psusp_intro [constructor] {X Y : Type*} (f : psusp X →* Y) : X →* Ω Y :=
|
||||
ap1 f ∘* loop_psusp_unit X
|
||||
|
||||
definition psusp_elim_psusp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) :
|
||||
psusp.elim g ∘* psusp_functor f ~* psusp.elim (g ∘* f) :=
|
||||
begin
|
||||
refine !passoc ⬝* _, exact pwhisker_left _ !psusp_functor_pcompose⁻¹*
|
||||
end
|
||||
|
||||
definition psusp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : psusp.elim f ~* psusp.elim g :=
|
||||
pwhisker_left _ (psusp_functor_phomotopy p)
|
||||
|
||||
definition psusp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y)
|
||||
: g ∘* psusp.elim f ~* psusp.elim (Ω→ g ∘* f) :=
|
||||
begin
|
||||
refine _ ⬝* pwhisker_left _ !psusp_functor_pcompose⁻¹*,
|
||||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
||||
exact pwhisker_right _ !loop_psusp_counit_natural
|
||||
end
|
||||
|
||||
definition loop_psusp_intro_natural {X Y Z : Type*} (g : psusp Y →* Z) (f : X →* Y) :
|
||||
loop_psusp_intro (g ∘* psusp_functor f) ~* loop_psusp_intro g ∘* f :=
|
||||
pwhisker_right _ !ap1_pcompose ⬝* !passoc ⬝* pwhisker_left _ !loop_psusp_unit_natural⁻¹* ⬝*
|
||||
!passoc⁻¹*
|
||||
|
||||
definition psusp_adjoint_loop_right_inv {X Y : Type*} (g : X →* Ω Y) :
|
||||
loop_psusp_intro (psusp.elim g) ~* g :=
|
||||
begin
|
||||
|
@ -338,7 +383,7 @@ namespace susp
|
|||
definition psusp_adjoint_loop_left_inv {X Y : Type*} (f : psusp X →* Y) :
|
||||
psusp.elim (loop_psusp_intro f) ~* f :=
|
||||
begin
|
||||
refine !pwhisker_left !psusp_functor_compose ⬝* _,
|
||||
refine !pwhisker_left !psusp_functor_pcompose ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine !pwhisker_right !loop_psusp_counit_natural⁻¹* ⬝* _,
|
||||
refine !passoc ⬝* _,
|
||||
|
@ -388,7 +433,7 @@ namespace susp
|
|||
esimp [psusp_adjoint_loop],
|
||||
refine _ ⬝* !passoc⁻¹*,
|
||||
apply pwhisker_left,
|
||||
apply psusp_functor_compose
|
||||
apply psusp_functor_pcompose
|
||||
end
|
||||
|
||||
/- iterated suspension -/
|
||||
|
@ -442,4 +487,6 @@ namespace susp
|
|||
symmetry, apply loopn_succ_in }
|
||||
end
|
||||
|
||||
|
||||
|
||||
end susp
|
||||
|
|
|
@ -59,7 +59,7 @@ namespace pushout
|
|||
protected definition code_equiv (x : BL + TR) (y : TL) :
|
||||
@hom C _ x (sum.inl (f y)) ≃ @hom C _ x (sum.inr (g y)) :=
|
||||
begin
|
||||
refine @is_prop.elim_set _ _ _ _ _ (ksurj y), { apply @is_trunc_equiv: apply is_set_hom},
|
||||
refine @prop_trunc.elim_set _ _ _ _ _ (ksurj y), { apply @is_trunc_equiv: apply is_set_hom},
|
||||
{ intro v, cases v with s p,
|
||||
exact code_equiv_pt x p},
|
||||
intro v v', cases v with s p, cases v' with s' p',
|
||||
|
@ -74,7 +74,7 @@ namespace pushout
|
|||
refine @set_quotient.rec_prop _ _ _ _ _ h, {intro l, apply is_trunc_eq, apply is_set_hom},
|
||||
intro l,
|
||||
have ksurj (k s) = tr (fiber.mk s idp), from !is_prop.elim,
|
||||
refine ap (λz, to_fun (@is_prop.elim_set _ _ _ _ _ z) (class_of l)) this ⬝ _,
|
||||
refine ap (λz, to_fun (@prop_trunc.elim_set _ _ _ _ _ z) (class_of l)) this ⬝ _,
|
||||
change class_of ([iE k F G (tr idp), DE k F G s, iD k F G (tr idp)] ++ l) =
|
||||
class_of (DE k F G s :: l) :> @hom C _ _ _,
|
||||
refine eq_of_rel (tr _) ⬝ (eq_of_rel (tr _)),
|
||||
|
|
|
@ -16,8 +16,11 @@ infixr ` ∨ ` := pwedge
|
|||
|
||||
namespace wedge
|
||||
|
||||
protected definition glue {A B : Type*} : inl pt = inr pt :> wedge A B :=
|
||||
pushout.glue ⋆
|
||||
|
||||
protected definition rec {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x))
|
||||
(Pinr : Π(x : B), P (inr x)) (Pglue : pathover P (Pinl pt) (glue ⋆) (Pinr pt))
|
||||
(Pinr : Π(x : B), P (inr x)) (Pglue : pathover P (Pinl pt) wedge.glue (Pinr pt))
|
||||
(y : wedge A B) : P y :=
|
||||
by induction y; apply Pinl; apply Pinr; induction x; exact Pglue
|
||||
|
||||
|
@ -25,6 +28,16 @@ namespace wedge
|
|||
(Pinr : B → P) (Pglue : Pinl pt = Pinr pt) (y : wedge A B) : P :=
|
||||
by induction y with a b x; exact Pinl a; exact Pinr b; induction x; exact Pglue
|
||||
|
||||
protected definition rec_glue {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x))
|
||||
(Pinr : Π(x : B), P (inr x)) (Pglue : pathover P (Pinl pt) wedge.glue (Pinr pt)) :
|
||||
apd (wedge.rec Pinl Pinr Pglue) wedge.glue = Pglue :=
|
||||
!pushout.rec_glue
|
||||
|
||||
protected definition elim_glue {A B : Type*} {P : Type} (Pinl : A → P)
|
||||
(Pinr : B → P) (Pglue : Pinl pt = Pinr pt) : ap (wedge.elim Pinl Pinr Pglue) wedge.glue = Pglue :=
|
||||
!pushout.elim_glue
|
||||
|
||||
|
||||
end wedge
|
||||
|
||||
attribute wedge.rec wedge.elim [recursor 7] [unfold 7]
|
||||
|
@ -38,7 +51,7 @@ namespace wedge
|
|||
{ fapply pmap.mk, intro a, apply pinr a, apply respect_pt },
|
||||
{ fapply is_equiv.adjointify, intro x, fapply pushout.elim_on x,
|
||||
exact λ x, Point A, exact id, intro u, reflexivity,
|
||||
intro x, fapply pushout.rec_on x, intro u, cases u, esimp, apply (glue unit.star)⁻¹,
|
||||
intro x, fapply pushout.rec_on x, intro u, cases u, esimp, apply wedge.glue⁻¹,
|
||||
intro a, reflexivity,
|
||||
intro u, cases u, esimp, apply eq_pathover,
|
||||
refine _ ⬝hp !ap_id⁻¹, fapply eq_hconcat, apply ap_compose inr,
|
||||
|
|
|
@ -119,6 +119,10 @@ namespace is_equiv
|
|||
(λ b, ap f !Hty⁻¹ ⬝ right_inv f b)
|
||||
(λ a, !Hty⁻¹ ⬝ left_inv f a)
|
||||
|
||||
definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g)
|
||||
: f⁻¹ ~ g⁻¹ :=
|
||||
λb, (left_inv g (f⁻¹ b))⁻¹ ⬝ ap g⁻¹ ((p (f⁻¹ b))⁻¹ ⬝ right_inv f b)
|
||||
|
||||
definition is_equiv_up [instance] [constructor] (A : Type)
|
||||
: is_equiv (up : A → lift A) :=
|
||||
adjointify up down (λa, by induction a;reflexivity) (λa, idp)
|
||||
|
@ -376,6 +380,9 @@ namespace equiv
|
|||
definition eq_of_fn_eq_fn_ap (f : A ≃ B) {x y : A} (q : x = y) : eq_of_fn_eq_fn' f (ap f q) = q :=
|
||||
eq_of_fn_eq_fn'_ap f q
|
||||
|
||||
definition to_inv_homotopy_inv {f g : A ≃ B} (p : f ~ g) : f⁻¹ᵉ ~ g⁻¹ᵉ :=
|
||||
inv_homotopy_inv p
|
||||
|
||||
--we need this theorem for the funext_of_ua proof
|
||||
theorem inv_eq {A B : Type} (eqf eqg : A ≃ B) (p : eqf = eqg) : (to_fun eqf)⁻¹ = (to_fun eqg)⁻¹ :=
|
||||
eq.rec_on p idp
|
||||
|
|
|
@ -278,6 +278,13 @@ namespace eq
|
|||
refine homotopy.rec_on' p _, intro q, induction q, exact H
|
||||
end
|
||||
|
||||
protected definition homotopy.rec_on_idp_left {A : Type} {P : A → Type} {g : Πa, P a}
|
||||
{Q : Πf, (f ~ g) → Type} {f : Π x, P x}
|
||||
(p : f ~ g) (H : Q g (homotopy.refl g)) : Q f p :=
|
||||
begin
|
||||
induction p using homotopy.rec_on, induction q, exact H
|
||||
end
|
||||
|
||||
definition eq_of_homotopy_inv {f g : Π x, P x} (H : f ~ g)
|
||||
: eq_of_homotopy (λx, (H x)⁻¹) = (eq_of_homotopy H)⁻¹ :=
|
||||
begin
|
||||
|
|
|
@ -67,11 +67,11 @@ namespace eq
|
|||
p₁ ⬝ (p₂ ⬝ p₃ ⬝ p₄) ⬝ p₅ = (p₁ ⬝ p₂) ⬝ p₃ ⬝ (p₄ ⬝ p₅) :=
|
||||
by induction p₅; induction p₄; induction p₃; reflexivity
|
||||
|
||||
-- The left inverse law.
|
||||
-- The right inverse law.
|
||||
definition con.right_inv [unfold 4] (p : x = y) : p ⬝ p⁻¹ = idp :=
|
||||
by induction p; reflexivity
|
||||
|
||||
-- The right inverse law.
|
||||
-- The left inverse law.
|
||||
definition con.left_inv [unfold 4] (p : x = y) : p⁻¹ ⬝ p = idp :=
|
||||
by induction p; reflexivity
|
||||
|
||||
|
@ -112,6 +112,12 @@ namespace eq
|
|||
(H₁ : a = b) (H₂ : C (H₁⁻¹⁻¹)) : C H₁ :=
|
||||
eq.rec_on (inv_inv H₁) H₂
|
||||
|
||||
definition eq.rec_symm {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₁ = a₀ → Type}
|
||||
(H : P idp) ⦃a₁ : A⦄ (p : a₁ = a₀) : P p :=
|
||||
begin
|
||||
cases p, exact H
|
||||
end
|
||||
|
||||
/- Theorems for moving things around in equations -/
|
||||
|
||||
definition con_eq_of_eq_inv_con {p : x = z} {q : y = z} {r : y = x} :
|
||||
|
@ -234,6 +240,9 @@ namespace eq
|
|||
protected definition homotopy.refl [refl] [reducible] [unfold_full] (f : Πx, P x) : f ~ f :=
|
||||
λ x, idp
|
||||
|
||||
protected definition homotopy.rfl [reducible] [unfold_full] {f : Πx, P x} : f ~ f :=
|
||||
homotopy.refl f
|
||||
|
||||
protected definition homotopy.symm [symm] [reducible] [unfold_full] {f g : Πx, P x} (H : f ~ g)
|
||||
: g ~ f :=
|
||||
λ x, (H x)⁻¹
|
||||
|
@ -242,6 +251,9 @@ namespace eq
|
|||
(H1 : f ~ g) (H2 : g ~ h) : f ~ h :=
|
||||
λ x, H1 x ⬝ H2 x
|
||||
|
||||
infix ` ⬝hty `:75 := homotopy.trans
|
||||
postfix `⁻¹ʰᵗʸ`:(max+1) := homotopy.symm
|
||||
|
||||
definition hwhisker_left [unfold_full] (g : B → C) {f f' : A → B} (H : f ~ f') :
|
||||
g ∘ f ~ g ∘ f' :=
|
||||
λa, ap g (H a)
|
||||
|
@ -250,6 +262,19 @@ namespace eq
|
|||
g ∘ f ~ g' ∘ f :=
|
||||
λa, H (f a)
|
||||
|
||||
definition compose_id (f : A → B) : f ∘ id ~ f :=
|
||||
by reflexivity
|
||||
|
||||
definition id_compose (f : A → B) : id ∘ f ~ f :=
|
||||
by reflexivity
|
||||
|
||||
definition compose2 {A B C : Type} {g g' : B → C} {f f' : A → B}
|
||||
(p : g ~ g') (q : f ~ f') : g ∘ f ~ g' ∘ f' :=
|
||||
hwhisker_right f p ⬝hty hwhisker_left g' q
|
||||
|
||||
definition hassoc {A B C D : Type} (h : C → D) (g : B → C) (f : A → B) : (h ∘ g) ∘ f ~ h ∘ (g ∘ f) :=
|
||||
λa, idp
|
||||
|
||||
definition homotopy_of_eq {f g : Πx, P x} (H1 : f = g) : f ~ g :=
|
||||
H1 ▸ homotopy.refl f
|
||||
|
||||
|
@ -277,14 +302,6 @@ namespace eq
|
|||
definition ap011 [unfold 9] (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
|
||||
by cases Ha; exact ap (f a) Hb
|
||||
|
||||
definition ap_eq_ap011_left (f : A → B → C) (Ha : a = a') (b : B) :
|
||||
ap (λa, f a b) Ha = ap011 f Ha idp :=
|
||||
by induction Ha; reflexivity
|
||||
|
||||
definition ap_eq_ap011_right (f : A → B → C) (a : A) (Hb : b = b') :
|
||||
ap (f a) Hb = ap011 f idp Hb :=
|
||||
by reflexivity
|
||||
|
||||
/- More theorems for moving things around in equations -/
|
||||
|
||||
definition tr_eq_of_eq_inv_tr {P : A → Type} {x y : A} {p : x = y} {u : P x} {v : P y} :
|
||||
|
@ -453,6 +470,22 @@ namespace eq
|
|||
ap h (ap10 p a) = ap10 (ap (λ f', h ∘ f') p) a:=
|
||||
by induction p; reflexivity
|
||||
|
||||
/- some lemma's about ap011 -/
|
||||
|
||||
definition ap_eq_ap011_left (f : A → B → C) (Ha : a = a') (b : B) :
|
||||
ap (λa, f a b) Ha = ap011 f Ha idp :=
|
||||
by induction Ha; reflexivity
|
||||
|
||||
definition ap_eq_ap011_right (f : A → B → C) (a : A) (Hb : b = b') :
|
||||
ap (f a) Hb = ap011 f idp Hb :=
|
||||
by reflexivity
|
||||
|
||||
definition ap_ap011 {A B C D : Type} (g : C → D) (f : A → B → C) {a a' : A} {b b' : B}
|
||||
(p : a = a') (q : b = b') : ap g (ap011 f p q) = ap011 (λa b, g (f a b)) p q :=
|
||||
begin
|
||||
induction p, exact (ap_compose g (f a) q)⁻¹
|
||||
end
|
||||
|
||||
|
||||
/- Transport and the groupoid structure of paths -/
|
||||
|
||||
|
|
|
@ -281,6 +281,11 @@ namespace eq
|
|||
(q : b =[p] b₂) : f b =[p] g b₂ :=
|
||||
by induction q; exact apo10 r b
|
||||
|
||||
definition apo011 {A : Type} {B C D : A → Type} {a a' : A} {p : a = a'} {b : B a} {b' : B a'}
|
||||
{c : C a} {c' : C a'} (f : Π⦃a⦄, B a → C a → D a) (q : b =[p] b') (r : c =[p] c') :
|
||||
f b c =[p] f b' c' :=
|
||||
begin induction q, induction r using idp_rec_on, exact idpo end
|
||||
|
||||
definition apdo011 {A : Type} {B : A → Type} {C : Π⦃a⦄, B a → Type}
|
||||
(f : Π⦃a⦄ (b : B a), C b) {a a' : A} (p : a = a') {b : B a} {b' : B a'} (q : b =[p] b')
|
||||
: f b =[apd011 C p q] f b' :=
|
||||
|
@ -445,5 +450,4 @@ namespace eq
|
|||
apd0111 f (ap k p) (pathover_ap B k (apo l q)) (pathover_tro _ (m c)) :=
|
||||
by induction q; reflexivity
|
||||
|
||||
|
||||
end eq
|
||||
|
|
|
@ -145,6 +145,8 @@ namespace is_trunc
|
|||
definition center (A : Type) [H : is_contr A] : A :=
|
||||
contr_internal.center (is_trunc.to_internal -2 A)
|
||||
|
||||
definition center' {A : Type} (H : is_contr A) : A := center A
|
||||
|
||||
definition center_eq [H : is_contr A] (a : A) : !center = a :=
|
||||
contr_internal.center_eq (is_trunc.to_internal -2 A) a
|
||||
|
||||
|
@ -337,13 +339,17 @@ namespace is_trunc
|
|||
{a a₂ : A} (p : a = a₂)
|
||||
(c : C a) (c₂ : C a₂)
|
||||
|
||||
definition is_prop.elimo [H : is_prop (C a)] : c =[p] c₂ :=
|
||||
pathover_of_eq_tr !is_prop.elim
|
||||
|
||||
definition is_trunc_pathover [instance]
|
||||
(n : ℕ₋₂) [H : is_trunc (n.+1) (C a)] : is_trunc n (c =[p] c₂) :=
|
||||
is_trunc_equiv_closed_rev n !pathover_equiv_eq_tr
|
||||
|
||||
definition is_prop.elimo [H : is_prop (C a)] : c =[p] c₂ :=
|
||||
pathover_of_eq_tr !is_prop.elim
|
||||
|
||||
definition is_prop_elimo_self {A : Type} (B : A → Type) {a : A} (b : B a) {H : is_prop (B a)} :
|
||||
@is_prop.elimo A B a a idp b b H = idpo :=
|
||||
!is_prop.elim
|
||||
|
||||
variables {p c c₂}
|
||||
theorem is_set.elimo (q q' : c =[p] c₂) [H : is_set (C a)] : q = q' :=
|
||||
!is_prop.elim
|
||||
|
|
|
@ -35,7 +35,7 @@ namespace is_trunc
|
|||
induction (P a b), apply idp},
|
||||
end
|
||||
|
||||
definition is_prop_is_trunc [instance] (n : trunc_index) :
|
||||
definition is_prop_is_trunc (n : trunc_index) :
|
||||
Π (A : Type), is_prop (is_trunc n A) :=
|
||||
begin
|
||||
induction n,
|
||||
|
@ -50,4 +50,10 @@ namespace is_trunc
|
|||
apply equiv.to_is_equiv,
|
||||
apply is_trunc.pi_char},
|
||||
end
|
||||
|
||||
local attribute is_prop_is_trunc [instance]
|
||||
definition is_trunc_succ_is_trunc [instance] (n m : ℕ₋₂) (A : Type) :
|
||||
is_trunc (n.+1) (is_trunc m A) :=
|
||||
!is_trunc_succ_of_is_prop
|
||||
|
||||
end is_trunc
|
||||
|
|
|
@ -146,26 +146,7 @@ namespace fiber
|
|||
: ppoint f ~* pmap.mk pr1 idp ∘* pfiber.sigma_char f :=
|
||||
!phomotopy.refl
|
||||
|
||||
definition pfiber_loop_space {A B : Type*} (f : A →* B) : pfiber (Ω→ f) ≃* Ω (pfiber f) :=
|
||||
pequiv_of_equiv
|
||||
(calc pfiber (Ω→ f) ≃ Σ(p : Point A = Point A), ap1 f p = rfl
|
||||
: (fiber.sigma_char (ap1 f) (Point (Ω B)))
|
||||
... ≃ Σ(p : Point A = Point A), (respect_pt f) = ap f p ⬝ (respect_pt f)
|
||||
: (sigma_equiv_sigma_right (λp,
|
||||
calc (ap1 f p = rfl) ≃ !respect_pt⁻¹ ⬝ (ap f p ⬝ !respect_pt) = rfl
|
||||
: equiv_eq_closed_left _ (con.assoc _ _ _)
|
||||
... ≃ ap f p ⬝ (respect_pt f) = (respect_pt f)
|
||||
: eq_equiv_inv_con_eq_idp
|
||||
... ≃ (respect_pt f) = ap f p ⬝ (respect_pt f)
|
||||
: eq_equiv_eq_symm))
|
||||
... ≃ fiber.mk (Point A) (respect_pt f) = fiber.mk pt (respect_pt f)
|
||||
: fiber_eq_equiv
|
||||
... ≃ Ω (pfiber f)
|
||||
: erfl)
|
||||
(begin cases f with f p, cases A with A a, cases B with B b, esimp at p, esimp at f,
|
||||
induction p, reflexivity end)
|
||||
|
||||
definition pfiber_equiv_of_phomotopy {A B : Type*} {f g : A →* B} (h : f ~* g)
|
||||
definition pfiber_pequiv_of_phomotopy {A B : Type*} {f g : A →* B} (h : f ~* g)
|
||||
: pfiber f ≃* pfiber g :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
|
@ -202,12 +183,125 @@ namespace fiber
|
|||
{ apply eq_pathover_Fl' }
|
||||
end
|
||||
|
||||
definition pfiber_equiv_of_square {A B C D : Type*} {f : A →* B} {g : C →* D} (h : A ≃* C)
|
||||
definition pfiber_pequiv_of_square {A B C D : Type*} {f : A →* B} {g : C →* D} (h : A ≃* C)
|
||||
(k : B ≃* D) (s : k ∘* f ~* g ∘* h) : pfiber f ≃* pfiber g :=
|
||||
calc pfiber f ≃* pfiber (k ∘* f) : pequiv_postcompose
|
||||
... ≃* pfiber (g ∘* h) : pfiber_equiv_of_phomotopy s
|
||||
... ≃* pfiber (g ∘* h) : pfiber_pequiv_of_phomotopy s
|
||||
... ≃* pfiber g : pequiv_precompose
|
||||
|
||||
definition pcompose_ppoint {A B : Type*} (f : A →* B) : f ∘* ppoint f ~* pconst (pfiber f) B :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ exact point_eq },
|
||||
{ exact !idp_con⁻¹ }
|
||||
end
|
||||
|
||||
definition point_fiber_eq {A B : Type} {f : A → B} {b : B} {x y : fiber f b}
|
||||
(p : point x = point y) (q : point_eq x = ap f p ⬝ point_eq y) :
|
||||
ap point (fiber_eq p q) = p :=
|
||||
begin
|
||||
induction x with a r, induction y with a' s, esimp at *, induction p,
|
||||
induction q using eq.rec_symm, induction s, reflexivity
|
||||
end
|
||||
|
||||
definition fiber_eq_equiv_fiber {A B : Type} {f : A → B} {b : B} (x y : fiber f b) :
|
||||
x = y ≃ fiber (ap1_gen f (point_eq x) (point_eq y)) (idpath b) :=
|
||||
calc
|
||||
x = y ≃ fiber.sigma_char f b x = fiber.sigma_char f b y :
|
||||
eq_equiv_fn_eq_of_equiv (fiber.sigma_char f b) x y
|
||||
... ≃ Σ(p : point x = point y), point_eq x =[p] point_eq y : sigma_eq_equiv
|
||||
... ≃ Σ(p : point x = point y), (point_eq x)⁻¹ ⬝ ap f p ⬝ point_eq y = idp :
|
||||
sigma_equiv_sigma_right (λp,
|
||||
calc point_eq x =[p] point_eq y ≃ point_eq x = ap f p ⬝ point_eq y : eq_pathover_equiv_Fl
|
||||
... ≃ ap f p ⬝ point_eq y = point_eq x : eq_equiv_eq_symm
|
||||
... ≃ (point_eq x)⁻¹ ⬝ (ap f p ⬝ point_eq y) = idp : eq_equiv_inv_con_eq_idp
|
||||
... ≃ (point_eq x)⁻¹ ⬝ ap f p ⬝ point_eq y = idp : equiv_eq_closed_left _ !con.assoc⁻¹)
|
||||
... ≃ fiber (ap1_gen f (point_eq x) (point_eq y)) (idpath b) : fiber.sigma_char
|
||||
|
||||
definition loop_pfiber [constructor] {A B : Type*} (f : A →* B) : Ω (pfiber f) ≃* pfiber (Ω→ f) :=
|
||||
pequiv_of_equiv (fiber_eq_equiv_fiber pt pt)
|
||||
begin
|
||||
induction f with f f₀, induction B with B b₀, esimp at (f,f₀), induction f₀, reflexivity
|
||||
end
|
||||
|
||||
definition pfiber_loop_space {A B : Type*} (f : A →* B) : pfiber (Ω→ f) ≃* Ω (pfiber f) :=
|
||||
(loop_pfiber f)⁻¹ᵉ*
|
||||
|
||||
definition point_fiber_eq_equiv_fiber {A B : Type} {f : A → B} {b : B} {x y : fiber f b}
|
||||
(p : x = y) : point (fiber_eq_equiv_fiber x y p) = ap1_gen point idp idp p :=
|
||||
by induction p; reflexivity
|
||||
|
||||
lemma ppoint_loop_pfiber {A B : Type*} (f : A →* B) :
|
||||
ppoint (Ω→ f) ∘* loop_pfiber f ~* Ω→ (ppoint f) :=
|
||||
phomotopy.mk (point_fiber_eq_equiv_fiber)
|
||||
begin
|
||||
induction f with f f₀, induction B with B b₀, esimp at (f,f₀), induction f₀, reflexivity
|
||||
end
|
||||
|
||||
lemma ppoint_loop_pfiber_inv {A B : Type*} (f : A →* B) :
|
||||
Ω→ (ppoint f) ∘* (loop_pfiber f)⁻¹ᵉ* ~* ppoint (Ω→ f) :=
|
||||
(phomotopy_pinv_right_of_phomotopy (ppoint_loop_pfiber f))⁻¹*
|
||||
|
||||
lemma pfiber_pequiv_of_phomotopy_ppoint {A B : Type*} {f g : A →* B} (h : f ~* g)
|
||||
: ppoint g ∘* pfiber_pequiv_of_phomotopy h ~* ppoint f :=
|
||||
begin
|
||||
induction f with f f₀, induction g with g g₀, induction h with h h₀, induction B with B b₀,
|
||||
esimp at *, induction h₀, induction g₀,
|
||||
fapply phomotopy.mk,
|
||||
{ reflexivity },
|
||||
{ esimp [pfiber_pequiv_of_phomotopy], exact !point_fiber_eq⁻¹ }
|
||||
end
|
||||
|
||||
lemma pequiv_postcompose_ppoint {A B B' : Type*} (f : A →* B) (g : B ≃* B')
|
||||
: ppoint f ∘* fiber.pequiv_postcompose f g ~* ppoint (g ∘* f) :=
|
||||
begin
|
||||
induction f with f f₀, induction g with g hg g₀, induction B with B b₀,
|
||||
induction B' with B' b₀', esimp at *, induction g₀, induction f₀,
|
||||
fapply phomotopy.mk,
|
||||
{ reflexivity },
|
||||
{ esimp [pequiv_postcompose], symmetry,
|
||||
refine !ap_compose⁻¹ ⬝ _, apply ap_constant }
|
||||
end
|
||||
|
||||
lemma pequiv_precompose_ppoint {A A' B : Type*} (f : A →* B) (g : A' ≃* A)
|
||||
: ppoint f ∘* fiber.pequiv_precompose f g ~* g ∘* ppoint (f ∘* g) :=
|
||||
begin
|
||||
induction f with f f₀, induction g with g hg g₀, induction B with B b₀,
|
||||
induction A with A a₀', esimp at *, induction g₀, induction f₀,
|
||||
reflexivity,
|
||||
end
|
||||
|
||||
definition pfiber_pequiv_of_square_ppoint {A B C D : Type*} {f : A →* B} {g : C →* D}
|
||||
(h : A ≃* C) (k : B ≃* D) (s : k ∘* f ~* g ∘* h)
|
||||
: ppoint g ∘* pfiber_pequiv_of_square h k s ~* h ∘* ppoint f :=
|
||||
begin
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine pwhisker_right _ !pequiv_precompose_ppoint ⬝* _,
|
||||
refine !passoc ⬝* _,
|
||||
apply pwhisker_left,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine pwhisker_right _ !pfiber_pequiv_of_phomotopy_ppoint ⬝* _,
|
||||
apply pinv_right_phomotopy_of_phomotopy,
|
||||
refine !pequiv_postcompose_ppoint⁻¹*,
|
||||
end
|
||||
|
||||
-- this breaks certain proofs if it is an instance
|
||||
definition is_trunc_fiber (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B)
|
||||
[is_trunc n A] [is_trunc (n.+1) B] : is_trunc n (fiber f b) :=
|
||||
is_trunc_equiv_closed_rev n !fiber.sigma_char
|
||||
|
||||
definition is_trunc_pfiber (n : ℕ₋₂) {A B : Type*} (f : A →* B)
|
||||
[is_trunc n A] [is_trunc (n.+1) B] : is_trunc n (pfiber f) :=
|
||||
is_trunc_fiber n f pt
|
||||
|
||||
definition fiber_equiv_of_is_contr [constructor] {A B : Type} (f : A → B) (b : B) [is_contr B] :
|
||||
fiber f b ≃ A :=
|
||||
!fiber.sigma_char ⬝e !sigma_equiv_of_is_contr_right
|
||||
|
||||
definition pfiber_pequiv_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B] :
|
||||
pfiber f ≃* A :=
|
||||
pequiv_of_equiv (fiber_equiv_of_is_contr f pt) idp
|
||||
|
||||
end fiber
|
||||
|
||||
open function is_equiv
|
||||
|
|
|
@ -6,7 +6,7 @@ Author: Floris van Doorn
|
|||
Theorems about the integers specific to HoTT
|
||||
-/
|
||||
|
||||
import .basic types.eq arity algebra.bundled
|
||||
import .order types.eq arity algebra.bundled
|
||||
open core eq is_equiv equiv algebra is_trunc
|
||||
open nat (hiding pred)
|
||||
|
||||
|
@ -28,6 +28,12 @@ namespace int
|
|||
AddAbGroup.mk ℤ _
|
||||
|
||||
notation `agℤ` := AbGroup_int
|
||||
|
||||
definition ring_int : Ring :=
|
||||
Ring.mk ℤ _
|
||||
|
||||
notation `rℤ` := ring_int
|
||||
|
||||
end
|
||||
|
||||
definition is_equiv_succ [constructor] [instance] : is_equiv succ :=
|
||||
|
@ -43,6 +49,17 @@ namespace int
|
|||
(λb g, f ⬝e g)
|
||||
(λb g, g ⬝e f⁻¹ᵉ)
|
||||
|
||||
definition max0 : ℤ → ℕ
|
||||
| (of_nat n) := n
|
||||
| (-[1+ n]) := 0
|
||||
|
||||
lemma le_max0 : Π(n : ℤ), n ≤ of_nat (max0 n)
|
||||
| (of_nat n) := proof le.refl n qed
|
||||
| (-[1+ n]) := proof unit.star qed
|
||||
|
||||
lemma le_of_max0_le {n : ℤ} {m : ℕ} (h : max0 n ≤ m) : n ≤ of_nat m :=
|
||||
le.trans (le_max0 n) (of_nat_le_of_nat_of_le h)
|
||||
|
||||
-- definition iterate_trans {A : Type} (f : A ≃ A) (a : ℤ)
|
||||
-- : iterate f a ⬝e f = iterate f (a + 1) :=
|
||||
-- sorry
|
||||
|
|
|
@ -6,9 +6,9 @@ Author: Floris van Doorn
|
|||
Theorems about the natural numbers specific to HoTT
|
||||
-/
|
||||
|
||||
import .order types.pointed
|
||||
import .order types.pointed .sub
|
||||
|
||||
open is_trunc unit empty eq equiv algebra pointed
|
||||
open is_trunc unit empty eq equiv algebra pointed is_equiv equiv function
|
||||
|
||||
namespace nat
|
||||
definition is_prop_le [instance] (n m : ℕ) : is_prop (n ≤ m) :=
|
||||
|
@ -194,5 +194,44 @@ namespace nat
|
|||
definition is_at_least_two_bit1 [constructor] (n : ℕ) [H : is_succ n] : is_at_least_two (bit1 n) :=
|
||||
by exact _
|
||||
|
||||
/- some facts about iterate -/
|
||||
|
||||
definition iterate_succ {A : Type} (f : A → A) (n : ℕ) (x : A) :
|
||||
f^[succ n] x = f^[n] (f x) :=
|
||||
by induction n with n p; reflexivity; exact ap f p
|
||||
|
||||
lemma iterate_sub {A : Type} (f : A ≃ A) {n m : ℕ} (h : n ≥ m) (a : A) :
|
||||
iterate f (n - m) a = iterate f n (iterate f⁻¹ m a) :=
|
||||
begin
|
||||
revert n h, induction m with m p: intro n h,
|
||||
{ reflexivity },
|
||||
{ cases n with n, exfalso, apply not_succ_le_zero _ h,
|
||||
rewrite [succ_sub_succ], refine p n (le_of_succ_le_succ h) ⬝ _,
|
||||
refine ap (f^[n]) _ ⬝ !iterate_succ⁻¹, exact !to_right_inv⁻¹ }
|
||||
end
|
||||
|
||||
definition iterate_commute {A : Type} {f g : A → A} (n : ℕ) (h : f ∘ g ~ g ∘ f) :
|
||||
iterate f n ∘ g ~ g ∘ iterate f n :=
|
||||
by induction n with n IH; reflexivity; exact λx, ap f (IH x) ⬝ !h
|
||||
|
||||
definition iterate_equiv {A : Type} (f : A ≃ A) (n : ℕ) : A ≃ A :=
|
||||
equiv.mk (iterate f n)
|
||||
(by induction n with n IH; apply is_equiv_id; exact is_equiv_compose f (iterate f n))
|
||||
|
||||
definition iterate_inv {A : Type} (f : A ≃ A) (n : ℕ) :
|
||||
(iterate_equiv f n)⁻¹ ~ iterate f⁻¹ n :=
|
||||
begin
|
||||
induction n with n p: intro a,
|
||||
reflexivity,
|
||||
exact p (f⁻¹ a) ⬝ !iterate_succ⁻¹
|
||||
end
|
||||
|
||||
definition iterate_left_inv {A : Type} (f : A ≃ A) (n : ℕ) (a : A) : f⁻¹ᵉ^[n] (f^[n] a) = a :=
|
||||
(iterate_inv f n (f^[n] a))⁻¹ ⬝ to_left_inv (iterate_equiv f n) a
|
||||
|
||||
definition iterate_right_inv {A : Type} (f : A ≃ A) (n : ℕ) (a : A) : f^[n] (f⁻¹ᵉ^[n] a) = a :=
|
||||
ap (f^[n]) (iterate_inv f n a)⁻¹ ⬝ to_right_inv (iterate_equiv f n) a
|
||||
|
||||
|
||||
|
||||
end nat
|
||||
|
|
|
@ -326,6 +326,11 @@ namespace pi
|
|||
local attribute ne [reducible]
|
||||
theorem is_prop_ne [instance] {A : Type} (a b : A) : is_prop (a ≠ b) := _
|
||||
|
||||
definition is_contr_pi_of_neg {A : Type} (B : A → Type) (H : ¬ A) : is_contr (Πa, B a) :=
|
||||
begin
|
||||
apply is_contr.mk (λa, empty.elim (H a)), intro f, apply eq_of_homotopy, intro x, contradiction
|
||||
end
|
||||
|
||||
/- Symmetry of Π -/
|
||||
definition is_equiv_flip [instance] {P : A → A' → Type}
|
||||
: is_equiv (@function.flip A A' P) :=
|
||||
|
|
|
@ -3,8 +3,10 @@ Copyright (c) 2014-2016 Jakob von Raumer. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Jakob von Raumer, Floris van Doorn
|
||||
|
||||
Ported from Coq HoTT
|
||||
Early library ported from Coq HoTT, but greatly extended since.
|
||||
The basic definitions are in init.pointed
|
||||
|
||||
See also .pointed2
|
||||
-/
|
||||
|
||||
import .nat.basic ..arity ..prop_trunc
|
||||
|
@ -126,6 +128,10 @@ namespace pointed
|
|||
|
||||
infixr ` ∘* `:60 := pcompose
|
||||
|
||||
definition respect_pt_pcompose {A B C : Type*} (g : B →* C) (f : A →* B)
|
||||
: respect_pt (g ∘* f) = ap g (respect_pt f) ⬝ respect_pt g :=
|
||||
idp
|
||||
|
||||
definition passoc [constructor] (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) :=
|
||||
phomotopy.mk (λa, idp)
|
||||
abstract !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose'⁻¹) ⬝ !con.assoc end
|
||||
|
@ -348,6 +354,10 @@ namespace pointed
|
|||
definition phomotopy_of_eq [constructor] {A B : Type*} {f g : A →* B} (p : f = g) : f ~* g :=
|
||||
phomotopy.mk (ap010 pmap.to_fun p) begin induction p, apply idp_con end
|
||||
|
||||
definition phomotopy_of_eq_idp {A B : Type*} (f : A →* B) :
|
||||
phomotopy_of_eq idp = phomotopy.refl f :=
|
||||
idp
|
||||
|
||||
definition pconcat_eq [constructor] {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g = h)
|
||||
: f ~* h :=
|
||||
p ⬝* phomotopy_of_eq q
|
||||
|
@ -359,6 +369,10 @@ namespace pointed
|
|||
infix ` ⬝*p `:75 := pconcat_eq
|
||||
infix ` ⬝p* `:75 := eq_pconcat
|
||||
|
||||
definition pr1_phomotopy_eq {A B : Type*} {f g : A →* B} {p q : f ~* g} (r : p = q) (a : A) :
|
||||
p a = q a :=
|
||||
ap010 to_homotopy r a
|
||||
|
||||
definition pmap_eq_equiv_internal {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
|
||||
calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g
|
||||
: eq_equiv_fn_eq pmap.sigma_char f g
|
||||
|
@ -397,6 +411,19 @@ namespace pointed
|
|||
definition eq_of_phomotopy (p : f ~* g) : f = g :=
|
||||
to_inv (pmap_eq_equiv f g) p
|
||||
|
||||
definition eq_of_phomotopy_refl {X Y : Type*} (f : X →* Y) :
|
||||
eq_of_phomotopy (phomotopy.refl f) = idpath f :=
|
||||
begin
|
||||
apply to_inv_eq_of_eq, reflexivity
|
||||
end
|
||||
|
||||
definition phomotopy_of_homotopy {X Y : Type*} {f g : X →* Y} (h : f ~ g) [is_set Y] : f ~* g :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ exact h },
|
||||
{ apply is_set.elim }
|
||||
end
|
||||
|
||||
-- TODO: flip arguments in s
|
||||
definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g :=
|
||||
eq_of_phomotopy (phomotopy.mk r s⁻¹)
|
||||
|
@ -404,6 +431,37 @@ namespace pointed
|
|||
definition pmap_eq_of_homotopy {A B : Type*} {f g : A →* B} [is_set B] (p : f ~ g) : f = g :=
|
||||
pmap_eq p !is_set.elim
|
||||
|
||||
definition phomotopy_of_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
||||
phomotopy_of_eq (eq_of_phomotopy p) = p :=
|
||||
to_right_inv (pmap_eq_equiv f g) p
|
||||
|
||||
definition phomotopy_rec_on_eq [recursor] {A B : Type*} {f g : A →* B}
|
||||
{Q : (f ~* g) → Type} (p : f ~* g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) : Q p :=
|
||||
phomotopy_of_eq_of_phomotopy p ▸ H (eq_of_phomotopy p)
|
||||
|
||||
definition phomotopy_rec_on_idp [recursor] {A B : Type*} {f : A →* B}
|
||||
{Q : Π{g}, (f ~* g) → Type} {g : A →* B} (p : f ~* g) (H : Q (phomotopy.refl f)) : Q p :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_eq,
|
||||
induction q, exact H
|
||||
end
|
||||
|
||||
definition phomotopy_rec_on_eq_phomotopy_of_eq {A B : Type*} {f g: A →* B}
|
||||
{Q : (f ~* g) → Type} (p : f = g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) :
|
||||
phomotopy_rec_on_eq (phomotopy_of_eq p) H = H p :=
|
||||
begin
|
||||
unfold phomotopy_rec_on_eq,
|
||||
refine ap (λp, p ▸ _) !adj ⬝ _,
|
||||
refine !tr_compose⁻¹ ⬝ _,
|
||||
apply apdt
|
||||
end
|
||||
|
||||
definition phomotopy_rec_on_idp_refl {A B : Type*} (f : A →* B)
|
||||
{Q : Π{g}, (f ~* g) → Type} (H : Q (phomotopy.refl f)) :
|
||||
phomotopy_rec_on_idp phomotopy.rfl H = H :=
|
||||
!phomotopy_rec_on_eq_phomotopy_of_eq
|
||||
|
||||
/- adjunction between (-)₊ : Type → Type* and pType.carrier : Type* → Type -/
|
||||
definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
|
@ -440,12 +498,21 @@ namespace pointed
|
|||
resulting pointed homotopy is reflexivity
|
||||
-/
|
||||
definition pap (F : (A →* B) → (C →* D)) {f g : A →* B} (p : f ~* g) : F f ~* F g :=
|
||||
phomotopy.mk (ap010 (λf, pmap.to_fun (F f)) (eq_of_phomotopy p))
|
||||
begin cases eq_of_phomotopy p, apply idp_con end
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp, reflexivity
|
||||
end
|
||||
|
||||
definition pap_refl (F : (A →* B) → (C →* D)) (f : A →* B) :
|
||||
pap F (phomotopy.refl f) = phomotopy.refl (F f) :=
|
||||
!phomotopy_rec_on_idp_refl
|
||||
|
||||
definition ap1_phomotopy {f g : A →* B} (p : f ~* g) : Ω→ f ~* Ω→ g :=
|
||||
pap Ω→ p
|
||||
|
||||
definition ap1_phomotopy_refl {X Y : Type*} (f : X →* Y) :
|
||||
ap1_phomotopy (phomotopy.refl f) = phomotopy.refl (Ω→ f) :=
|
||||
!pap_refl
|
||||
|
||||
--a proof not using function extensionality:
|
||||
definition ap1_phomotopy_explicit {f g : A →* B} (p : f ~* g) : Ω→ f ~* Ω→ g :=
|
||||
begin
|
||||
|
@ -465,6 +532,26 @@ namespace pointed
|
|||
{ exact ap1_phomotopy IH}
|
||||
end
|
||||
|
||||
-- the following two definitiongs are mostly the same, maybe we should remove one
|
||||
definition ap_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) :
|
||||
ap (λf : A →* B, f a) (eq_of_phomotopy p) = p a :=
|
||||
ap010 to_homotopy (phomotopy_of_eq_of_phomotopy p) a
|
||||
|
||||
definition to_fun_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) :
|
||||
ap010 pmap.to_fun (eq_of_phomotopy p) a = p a :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
exact ap (λx, ap010 pmap.to_fun x a) !eq_of_phomotopy_refl
|
||||
end
|
||||
|
||||
definition ap1_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
||||
ap Ω→ (eq_of_phomotopy p) = eq_of_phomotopy (ap1_phomotopy p) :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
|
||||
exact !ap1_phomotopy_refl⁻¹
|
||||
end
|
||||
|
||||
/- pointed homotopies between the given pointed maps -/
|
||||
|
||||
definition ap1_pid [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) :=
|
||||
|
@ -509,6 +596,20 @@ namespace pointed
|
|||
definition ap1_pconst [constructor] (A B : Type*) : Ω→(pconst A B) ~* pconst (Ω A) (Ω B) :=
|
||||
phomotopy.mk (λp, ap1_gen_idp_left (const A pt) p ⬝ ap_constant p pt) rfl
|
||||
|
||||
definition ap1_gen_con_left {A B : Type} {a a' : A} {b₀ b₁ b₂ : B}
|
||||
{f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ q₁ : b₀ = b₁} {q₀' q₁' : b₁ = b₂}
|
||||
(r₀ : f a = q₀) (r₁ : f a' = q₁) (r₀' : f' a = q₀') (r₁' : f' a' = q₁') (p : a = a') :
|
||||
ap1_gen (λa, f a ⬝ f' a) (r₀ ◾ r₀') (r₁ ◾ r₁') p =
|
||||
whisker_right q₀' (ap1_gen f r₀ r₁ p) ⬝ whisker_left q₁ (ap1_gen f' r₀' r₁' p) :=
|
||||
begin induction r₀, induction r₁, induction r₀', induction r₁', induction p, reflexivity end
|
||||
|
||||
definition ap1_gen_con_left_idp {A B : Type} {a : A} {b₀ b₁ b₂ : B}
|
||||
{f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ : b₀ = b₁} {q₁ : b₁ = b₂}
|
||||
(r₀ : f a = q₀) (r₁ : f' a = q₁) :
|
||||
ap1_gen_con_left r₀ r₀ r₁ r₁ idp =
|
||||
!con.left_inv ⬝ (ap (whisker_right q₁) !con.left_inv ◾ ap (whisker_left _) !con.left_inv)⁻¹ :=
|
||||
begin induction r₀, induction r₁, reflexivity end
|
||||
|
||||
definition ptransport_change_eq [constructor] {A : Type} (B : A → Type*) {a a' : A} {p q : a = a'}
|
||||
(r : p = q) : ptransport B p ~* ptransport B q :=
|
||||
phomotopy.mk (λb, ap (λp, transport B p b) r) begin induction r, apply idp_con end
|
||||
|
@ -655,6 +756,9 @@ namespace pointed
|
|||
: pequiv.to_pmap (f ⬝e* g) = g ∘* f :=
|
||||
!to_pmap_pequiv_of_pmap
|
||||
|
||||
definition to_fun_pequiv_trans {X Y Z : Type*} (f : X ≃* Y) (g :Y ≃* Z) : f ⬝e* g ~ g ∘ f :=
|
||||
λx, idp
|
||||
|
||||
definition pequiv_change_fun [constructor] (f : A ≃* B) (f' : A →* B) (Heq : f ~ f') : A ≃* B :=
|
||||
pequiv_of_pmap f' (is_equiv.homotopy_closed f Heq)
|
||||
|
||||
|
@ -892,6 +996,10 @@ namespace pointed
|
|||
definition loop_pequiv_loop [constructor] (f : A ≃* B) : Ω A ≃* Ω B :=
|
||||
loopn_pequiv_loopn 1 f
|
||||
|
||||
definition loop_pequiv_eq_closed [constructor] {A : Type} {a a' : A} (p : a = a')
|
||||
: pointed.MK (a = a) idp ≃* pointed.MK (a' = a') idp :=
|
||||
pequiv_of_equiv (loop_equiv_eq_closed p) (con.left_inv p)
|
||||
|
||||
definition to_pmap_loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B)
|
||||
: loopn_pequiv_loopn n f ~* apn n f :=
|
||||
!to_pmap_pequiv_MK2
|
||||
|
@ -919,6 +1027,12 @@ namespace pointed
|
|||
loop_pequiv_loop (pequiv.refl A) ~* pequiv.refl (Ω A) :=
|
||||
loopn_pequiv_loopn_rfl 1 A
|
||||
|
||||
definition apn_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
||||
Ω→[n] f⁻¹ᵉ* ~* (loopn_pequiv_loopn n f)⁻¹ᵉ* :=
|
||||
begin
|
||||
refine !to_pinv_pequiv_MK2⁻¹*
|
||||
end
|
||||
|
||||
definition pmap_functor [constructor] {A A' B B' : Type*} (f : A' →* A) (g : B →* B') :
|
||||
ppmap A B →* ppmap A' B' :=
|
||||
pmap.mk (λh, g ∘* h ∘* f)
|
||||
|
@ -950,20 +1064,6 @@ namespace pointed
|
|||
exact !con.right_inv⁻¹ ⬝ ((!idp_con⁻¹ ⬝ !ap_id⁻¹) ◾ (!ap_id⁻¹⁻² ⬝ !idp_con⁻¹)), }
|
||||
end
|
||||
|
||||
/- -- TODO
|
||||
definition pmap_pequiv_pmap {A A' B B' : Type*} (f : A ≃* A') (g : B ≃* B') :
|
||||
ppmap A B ≃* ppmap A' B' :=
|
||||
pequiv.MK (pmap_functor f⁻¹ᵉ* g) (pmap_functor f g⁻¹ᵉ*)
|
||||
abstract begin
|
||||
intro a, esimp, apply pmap_eq,
|
||||
{ esimp, },
|
||||
{ }
|
||||
end end
|
||||
abstract begin
|
||||
|
||||
end end
|
||||
-/
|
||||
|
||||
/- properties of iterated loop space -/
|
||||
variable (A)
|
||||
definition loopn_succ_in (n : ℕ) : Ω[succ n] A ≃* Ω[n] (Ω A) :=
|
||||
|
@ -1071,7 +1171,7 @@ namespace pointed
|
|||
refine pwhisker_left g !pleft_inv ⬝* !pcompose_pid, },
|
||||
end
|
||||
|
||||
definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
|
||||
definition loop_ppmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
|
||||
pequiv_of_equiv
|
||||
(calc Ω(ppmap A B) ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _
|
||||
... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char
|
||||
|
@ -1084,7 +1184,7 @@ namespace pointed
|
|||
definition papply_pcompose [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
|
||||
pmap.mk (λ(f : A →* B), f a) idp
|
||||
|
||||
definition pmap_pbool_pequiv [constructor] (B : Type*) : ppmap pbool B ≃* B :=
|
||||
definition ppmap_pbool_pequiv [constructor] (B : Type*) : ppmap pbool B ≃* B :=
|
||||
begin
|
||||
fapply pequiv.MK,
|
||||
{ exact papply B tt },
|
||||
|
|
847
hott/types/pointed2.hlean
Normal file
847
hott/types/pointed2.hlean
Normal file
|
@ -0,0 +1,847 @@
|
|||
/-
|
||||
Copyright (c) 2017 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Floris van Doorn
|
||||
|
||||
More results about pointed types.
|
||||
|
||||
Contains
|
||||
- squares of pointed maps,
|
||||
- equalities between pointed homotopies and
|
||||
- squares between pointed homotopies
|
||||
- pointed maps into and out of (ppmap A B), the pointed type of pointed maps from A to B
|
||||
-/
|
||||
|
||||
|
||||
import algebra.homotopy_group eq2
|
||||
|
||||
open pointed eq unit is_trunc trunc nat group is_equiv equiv sigma function
|
||||
|
||||
namespace pointed
|
||||
|
||||
|
||||
section psquare
|
||||
/-
|
||||
Squares of pointed maps
|
||||
|
||||
We treat expressions of the form
|
||||
psquare f g h k :≡ k ∘* f ~* g ∘* h
|
||||
as squares, where f is the top, g is the bottom, h is the left face and k is the right face.
|
||||
Then the following are operations on squares
|
||||
-/
|
||||
|
||||
variables {A A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
||||
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
||||
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
||||
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
||||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||||
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||||
|
||||
definition psquare [reducible] (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
||||
(f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) : Type :=
|
||||
f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁
|
||||
|
||||
definition psquare_of_phomotopy (p : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁) : psquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||||
p
|
||||
|
||||
definition phomotopy_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁ :=
|
||||
p
|
||||
|
||||
definition phdeg_square {f f' : A →* A'} (p : f ~* f') : psquare !pid !pid f f' :=
|
||||
!pcompose_pid ⬝* p⁻¹* ⬝* !pid_pcompose⁻¹*
|
||||
definition pvdeg_square {f f' : A →* A'} (p : f ~* f') : psquare f f' !pid !pid :=
|
||||
!pid_pcompose ⬝* p ⬝* !pcompose_pid⁻¹*
|
||||
|
||||
variables (f₀₁ f₁₀)
|
||||
definition phrefl : psquare !pid !pid f₀₁ f₀₁ := phdeg_square phomotopy.rfl
|
||||
definition pvrefl : psquare f₁₀ f₁₀ !pid !pid := pvdeg_square phomotopy.rfl
|
||||
variables {f₀₁ f₁₀}
|
||||
definition phrfl : psquare !pid !pid f₀₁ f₀₁ := phrefl f₀₁
|
||||
definition pvrfl : psquare f₁₀ f₁₀ !pid !pid := pvrefl f₁₀
|
||||
|
||||
definition phconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
||||
psquare (f₃₀ ∘* f₁₀) (f₃₂ ∘* f₁₂) f₀₁ f₄₁ :=
|
||||
!passoc⁻¹* ⬝* pwhisker_right f₁₀ q ⬝* !passoc ⬝* pwhisker_left f₃₂ p ⬝* !passoc⁻¹*
|
||||
|
||||
definition pvconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||||
psquare f₁₀ f₁₄ (f₀₃ ∘* f₀₁) (f₂₃ ∘* f₂₁) :=
|
||||
!passoc ⬝* pwhisker_left _ p ⬝* !passoc⁻¹* ⬝* pwhisker_right _ q ⬝* !passoc
|
||||
|
||||
definition phinverse {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₀⁻¹ᵉ* f₁₂⁻¹ᵉ* f₂₁ f₀₁ :=
|
||||
!pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv f₁₂)⁻¹* ⬝* !passoc ⬝*
|
||||
pwhisker_left _
|
||||
(!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid)
|
||||
|
||||
definition pvinverse {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₂ f₁₀ f₀₁⁻¹ᵉ* f₂₁⁻¹ᵉ* :=
|
||||
(phinverse p⁻¹*)⁻¹*
|
||||
|
||||
definition phomotopy_hconcat (q : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₀ f₁₂ f₀₁' f₂₁ :=
|
||||
p ⬝* pwhisker_left f₁₂ q⁻¹*
|
||||
|
||||
definition hconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) :
|
||||
psquare f₁₀ f₁₂ f₀₁ f₂₁' :=
|
||||
pwhisker_right f₁₀ q ⬝* p
|
||||
|
||||
definition phomotopy_vconcat (q : f₁₀' ~* f₁₀) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₀' f₁₂ f₀₁ f₂₁ :=
|
||||
pwhisker_left f₂₁ q ⬝* p
|
||||
|
||||
definition vconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₁₂' ~* f₁₂) :
|
||||
psquare f₁₀ f₁₂' f₀₁ f₂₁ :=
|
||||
p ⬝* pwhisker_right f₀₁ q⁻¹*
|
||||
|
||||
infix ` ⬝h* `:73 := phconcat
|
||||
infix ` ⬝v* `:73 := pvconcat
|
||||
infixl ` ⬝hp* `:72 := hconcat_phomotopy
|
||||
infixr ` ⬝ph* `:72 := phomotopy_hconcat
|
||||
infixl ` ⬝vp* `:72 := vconcat_phomotopy
|
||||
infixr ` ⬝pv* `:72 := phomotopy_vconcat
|
||||
postfix `⁻¹ʰ*`:(max+1) := phinverse
|
||||
postfix `⁻¹ᵛ*`:(max+1) := pvinverse
|
||||
|
||||
definition pwhisker_tl (f : A →* A₀₀) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (f₁₀ ∘* f) f₁₂ (f₀₁ ∘* f) f₂₁ :=
|
||||
!passoc⁻¹* ⬝* pwhisker_right f q ⬝* !passoc
|
||||
|
||||
definition ap1_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (Ω→ f₁₀) (Ω→ f₁₂) (Ω→ f₀₁) (Ω→ f₂₁) :=
|
||||
!ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose
|
||||
|
||||
definition apn_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (Ω→[n] f₁₀) (Ω→[n] f₁₂) (Ω→[n] f₀₁) (Ω→[n] f₂₁) :=
|
||||
!apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose
|
||||
|
||||
definition ptrunc_functor_psquare (n : ℕ₋₂) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (ptrunc_functor n f₁₀) (ptrunc_functor n f₁₂)
|
||||
(ptrunc_functor n f₀₁) (ptrunc_functor n f₂₁) :=
|
||||
!ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose
|
||||
|
||||
definition homotopy_group_functor_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (π→[n] f₁₀) (π→[n] f₁₂) (π→[n] f₀₁) (π→[n] f₂₁) :=
|
||||
!homotopy_group_functor_compose⁻¹* ⬝* homotopy_group_functor_phomotopy n p ⬝*
|
||||
!homotopy_group_functor_compose
|
||||
|
||||
definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n]
|
||||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (π→g[n] f₁₀) (π→g[n] f₁₂) (π→g[n] f₀₁) (π→g[n] f₂₁) :=
|
||||
begin
|
||||
induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p))
|
||||
end
|
||||
|
||||
end psquare
|
||||
|
||||
definition punit_pmap_phomotopy [constructor] {A : Type*} (f : punit →* A) :
|
||||
f ~* pconst punit A :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro u, induction u, exact respect_pt f },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition is_contr_punit_pmap (A : Type*) : is_contr (punit →* A) :=
|
||||
is_contr.mk (pconst punit A) (λf, eq_of_phomotopy (punit_pmap_phomotopy f)⁻¹*)
|
||||
|
||||
definition phomotopy_eq_equiv {A B : Type*} {f g : A →* B} (h k : f ~* g) :
|
||||
(h = k) ≃ Σ(p : to_homotopy h ~ to_homotopy k),
|
||||
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h :=
|
||||
calc
|
||||
h = k ≃ phomotopy.sigma_char _ _ h = phomotopy.sigma_char _ _ k
|
||||
: eq_equiv_fn_eq (phomotopy.sigma_char f g) h k
|
||||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||||
pathover (λp, p pt ⬝ respect_pt g = respect_pt f) (to_homotopy_pt h) p (to_homotopy_pt k)
|
||||
: sigma_eq_equiv _ _
|
||||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||||
to_homotopy_pt h = ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k
|
||||
: sigma_equiv_sigma_right (λp, eq_pathover_equiv_Fl p (to_homotopy_pt h) (to_homotopy_pt k))
|
||||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||||
ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||||
whisker_right (respect_pt g) (apd10 p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||||
: sigma_equiv_sigma_right (λp, equiv_eq_closed_left _ (whisker_right _ !whisker_right_ap⁻¹))
|
||||
... ≃ Σ(p : to_homotopy h ~ to_homotopy k),
|
||||
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||||
|
||||
definition phomotopy_eq {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k)
|
||||
(q : whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h) : h = k :=
|
||||
to_inv (phomotopy_eq_equiv h k) ⟨p, q⟩
|
||||
|
||||
definition phomotopy_eq' {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k)
|
||||
(q : square (to_homotopy_pt h) (to_homotopy_pt k) (whisker_right (respect_pt g) (p pt)) idp) : h = k :=
|
||||
phomotopy_eq p (eq_of_square q)⁻¹
|
||||
|
||||
definition trans_refl {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* phomotopy.refl g = p :=
|
||||
begin
|
||||
induction A with A a₀, induction B with B b₀,
|
||||
induction f with f f₀, induction g with g g₀, induction p with p p₀,
|
||||
esimp at *, induction g₀, induction p₀,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition eq_of_phomotopy_trans {X Y : Type*} {f g h : X →* Y} (p : f ~* g) (q : g ~* h) :
|
||||
eq_of_phomotopy (p ⬝* q) = eq_of_phomotopy p ⬝ eq_of_phomotopy q :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp,
|
||||
exact ap eq_of_phomotopy !trans_refl ⬝ whisker_left _ !eq_of_phomotopy_refl⁻¹
|
||||
end
|
||||
|
||||
definition refl_trans {A B : Type*} {f g : A →* B} (p : f ~* g) : phomotopy.refl f ⬝* p = p :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
induction A with A a₀, induction B with B b₀,
|
||||
induction f with f f₀, esimp at *, induction f₀,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition trans_assoc {A B : Type*} {f g h i : A →* B} (p : f ~* g) (q : g ~* h)
|
||||
(r : h ~* i) : p ⬝* q ⬝* r = p ⬝* (q ⬝* r) :=
|
||||
begin
|
||||
induction r using phomotopy_rec_on_idp,
|
||||
induction q using phomotopy_rec_on_idp,
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
induction B with B b₀,
|
||||
induction f with f f₀, esimp at *, induction f₀,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition refl_symm {A B : Type*} (f : A →* B) : phomotopy.rfl⁻¹* = phomotopy.refl f :=
|
||||
begin
|
||||
induction B with B b₀,
|
||||
induction f with f f₀, esimp at *, induction f₀,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition symm_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹*⁻¹* = p :=
|
||||
phomotopy_eq (λa, !inv_inv)
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp, induction f with f f₀, induction B with B b₀,
|
||||
esimp at *, induction f₀, reflexivity
|
||||
end
|
||||
|
||||
definition trans_right_inv {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* p⁻¹* = phomotopy.rfl :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp, exact !refl_trans ⬝ !refl_symm
|
||||
end
|
||||
|
||||
definition trans_left_inv {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹* ⬝* p = phomotopy.rfl :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp, exact !trans_refl ⬝ !refl_symm
|
||||
end
|
||||
|
||||
definition trans2 {A B : Type*} {f g h : A →* B} {p p' : f ~* g} {q q' : g ~* h}
|
||||
(r : p = p') (s : q = q') : p ⬝* q = p' ⬝* q' :=
|
||||
ap011 phomotopy.trans r s
|
||||
|
||||
definition pcompose3 {A B C : Type*} {g g' : B →* C} {f f' : A →* B}
|
||||
{p p' : g ~* g'} {q q' : f ~* f'} (r : p = p') (s : q = q') : p ◾* q = p' ◾* q' :=
|
||||
ap011 pcompose2 r s
|
||||
|
||||
definition symm2 {A B : Type*} {f g : A →* B} {p p' : f ~* g} (r : p = p') : p⁻¹* = p'⁻¹* :=
|
||||
ap phomotopy.symm r
|
||||
|
||||
infixl ` ◾** `:80 := pointed.trans2
|
||||
infixl ` ◽* `:81 := pointed.pcompose3
|
||||
postfix `⁻²**`:(max+1) := pointed.symm2
|
||||
|
||||
definition trans_symm {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g ~* h) :
|
||||
(p ⬝* q)⁻¹* = q⁻¹* ⬝* p⁻¹* :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp,
|
||||
exact !trans_refl⁻²** ⬝ !trans_refl⁻¹ ⬝ idp ◾** !refl_symm⁻¹
|
||||
end
|
||||
|
||||
definition phwhisker_left {A B : Type*} {f g h : A →* B} (p : f ~* g) {q q' : g ~* h}
|
||||
(s : q = q') : p ⬝* q = p ⬝* q' :=
|
||||
idp ◾** s
|
||||
|
||||
definition phwhisker_right {A B : Type*} {f g h : A →* B} {p p' : f ~* g} (q : g ~* h)
|
||||
(r : p = p') : p ⬝* q = p' ⬝* q :=
|
||||
r ◾** idp
|
||||
|
||||
definition pwhisker_left_refl {A B C : Type*} (g : B →* C) (f : A →* B) :
|
||||
pwhisker_left g (phomotopy.refl f) = phomotopy.refl (g ∘* f) :=
|
||||
begin
|
||||
induction A with A a₀, induction B with B b₀, induction C with C c₀,
|
||||
induction f with f f₀, induction g with g g₀,
|
||||
esimp at *, induction g₀, induction f₀, reflexivity
|
||||
end
|
||||
|
||||
definition pwhisker_right_refl {A B C : Type*} (f : A →* B) (g : B →* C) :
|
||||
pwhisker_right f (phomotopy.refl g) = phomotopy.refl (g ∘* f) :=
|
||||
begin
|
||||
induction A with A a₀, induction B with B b₀, induction C with C c₀,
|
||||
induction f with f f₀, induction g with g g₀,
|
||||
esimp at *, induction g₀, induction f₀, reflexivity
|
||||
end
|
||||
|
||||
definition pcompose2_refl {A B C : Type*} (g : B →* C) (f : A →* B) :
|
||||
phomotopy.refl g ◾* phomotopy.refl f = phomotopy.rfl :=
|
||||
!pwhisker_right_refl ◾** !pwhisker_left_refl ⬝ !refl_trans
|
||||
|
||||
definition pcompose2_refl_left {A B C : Type*} (g : B →* C) {f f' : A →* B} (p : f ~* f') :
|
||||
phomotopy.rfl ◾* p = pwhisker_left g p :=
|
||||
!pwhisker_right_refl ◾** idp ⬝ !refl_trans
|
||||
|
||||
definition pcompose2_refl_right {A B C : Type*} {g g' : B →* C} (f : A →* B) (p : g ~* g') :
|
||||
p ◾* phomotopy.rfl = pwhisker_right f p :=
|
||||
idp ◾** !pwhisker_left_refl ⬝ !trans_refl
|
||||
|
||||
definition pwhisker_left_trans {A B C : Type*} (g : B →* C) {f₁ f₂ f₃ : A →* B}
|
||||
(p : f₁ ~* f₂) (q : f₂ ~* f₃) :
|
||||
pwhisker_left g (p ⬝* q) = pwhisker_left g p ⬝* pwhisker_left g q :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
induction q using phomotopy_rec_on_idp,
|
||||
refine _ ⬝ !pwhisker_left_refl⁻¹ ◾** !pwhisker_left_refl⁻¹,
|
||||
refine ap (pwhisker_left g) !trans_refl ⬝ !pwhisker_left_refl ⬝ !trans_refl⁻¹
|
||||
end
|
||||
|
||||
definition pwhisker_right_trans {A B C : Type*} (f : A →* B) {g₁ g₂ g₃ : B →* C}
|
||||
(p : g₁ ~* g₂) (q : g₂ ~* g₃) :
|
||||
pwhisker_right f (p ⬝* q) = pwhisker_right f p ⬝* pwhisker_right f q :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
induction q using phomotopy_rec_on_idp,
|
||||
refine _ ⬝ !pwhisker_right_refl⁻¹ ◾** !pwhisker_right_refl⁻¹,
|
||||
refine ap (pwhisker_right f) !trans_refl ⬝ !pwhisker_right_refl ⬝ !trans_refl⁻¹
|
||||
end
|
||||
|
||||
definition pwhisker_left_symm {A B C : Type*} (g : B →* C) {f₁ f₂ : A →* B} (p : f₁ ~* f₂) :
|
||||
pwhisker_left g p⁻¹* = (pwhisker_left g p)⁻¹* :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
refine _ ⬝ ap phomotopy.symm !pwhisker_left_refl⁻¹,
|
||||
refine ap (pwhisker_left g) !refl_symm ⬝ !pwhisker_left_refl ⬝ !refl_symm⁻¹
|
||||
end
|
||||
|
||||
definition pwhisker_right_symm {A B C : Type*} (f : A →* B) {g₁ g₂ : B →* C} (p : g₁ ~* g₂) :
|
||||
pwhisker_right f p⁻¹* = (pwhisker_right f p)⁻¹* :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
refine _ ⬝ ap phomotopy.symm !pwhisker_right_refl⁻¹,
|
||||
refine ap (pwhisker_right f) !refl_symm ⬝ !pwhisker_right_refl ⬝ !refl_symm⁻¹
|
||||
end
|
||||
|
||||
definition trans_eq_of_eq_symm_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : q = p⁻¹* ⬝* r) : p ⬝* q = r :=
|
||||
idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_right_inv p ◾** idp ⬝ !refl_trans
|
||||
|
||||
definition eq_symm_trans_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : p ⬝* q = r) : q = p⁻¹* ⬝* r :=
|
||||
!refl_trans⁻¹ ⬝ !trans_left_inv⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s
|
||||
|
||||
definition trans_eq_of_eq_trans_symm {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : p = r ⬝* q⁻¹*) : p ⬝* q = r :=
|
||||
s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** trans_left_inv q ⬝ !trans_refl
|
||||
|
||||
definition eq_trans_symm_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : p ⬝* q = r) : p = r ⬝* q⁻¹* :=
|
||||
!trans_refl⁻¹ ⬝ idp ◾** !trans_right_inv⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp
|
||||
|
||||
definition eq_trans_of_symm_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : p⁻¹* ⬝* r = q) : r = p ⬝* q :=
|
||||
!refl_trans⁻¹ ⬝ !trans_right_inv⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s
|
||||
|
||||
definition symm_trans_eq_of_eq_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : r = p ⬝* q) : p⁻¹* ⬝* r = q :=
|
||||
idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_left_inv p ◾** idp ⬝ !refl_trans
|
||||
|
||||
definition eq_trans_of_trans_symm_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : r ⬝* q⁻¹* = p) : r = p ⬝* q :=
|
||||
!trans_refl⁻¹ ⬝ idp ◾** !trans_left_inv⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp
|
||||
|
||||
definition trans_symm_eq_of_eq_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : r = p ⬝* q) : r ⬝* q⁻¹* = p :=
|
||||
s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** trans_right_inv q ⬝ !trans_refl
|
||||
|
||||
section phsquare
|
||||
/-
|
||||
Squares of pointed homotopies
|
||||
-/
|
||||
|
||||
variables {A B C : Type*} {f f' f₀₀ f₂₀ f₄₀ f₀₂ f₂₂ f₄₂ f₀₄ f₂₄ f₄₄ : A →* B}
|
||||
{p₁₀ : f₀₀ ~* f₂₀} {p₃₀ : f₂₀ ~* f₄₀}
|
||||
{p₀₁ : f₀₀ ~* f₀₂} {p₂₁ : f₂₀ ~* f₂₂} {p₄₁ : f₄₀ ~* f₄₂}
|
||||
{p₁₂ : f₀₂ ~* f₂₂} {p₃₂ : f₂₂ ~* f₄₂}
|
||||
{p₀₃ : f₀₂ ~* f₀₄} {p₂₃ : f₂₂ ~* f₂₄} {p₄₃ : f₄₂ ~* f₄₄}
|
||||
{p₁₄ : f₀₄ ~* f₂₄} {p₃₄ : f₂₄ ~* f₄₄}
|
||||
|
||||
definition phsquare [reducible] (p₁₀ : f₀₀ ~* f₂₀) (p₁₂ : f₀₂ ~* f₂₂)
|
||||
(p₀₁ : f₀₀ ~* f₀₂) (p₂₁ : f₂₀ ~* f₂₂) : Type :=
|
||||
p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂
|
||||
|
||||
definition phsquare_of_eq (p : p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂) : phsquare p₁₀ p₁₂ p₀₁ p₂₁ := p
|
||||
definition eq_of_phsquare (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂ := p
|
||||
|
||||
-- definition phsquare.mk (p : Πx, square (p₁₀ x) (p₁₂ x) (p₀₁ x) (p₂₁ x))
|
||||
-- (q : cube (square_of_eq (to_homotopy_pt p₁₀)) (square_of_eq (to_homotopy_pt p₁₂))
|
||||
-- (square_of_eq (to_homotopy_pt p₀₁)) (square_of_eq (to_homotopy_pt p₂₁))
|
||||
-- (p pt) ids) : phsquare p₁₀ p₁₂ p₀₁ p₂₁ :=
|
||||
-- begin
|
||||
-- fapply phomotopy_eq,
|
||||
-- { intro x, apply eq_of_square (p x) },
|
||||
-- { generalize p pt, intro r, exact sorry }
|
||||
-- end
|
||||
|
||||
|
||||
definition phhconcat (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (q : phsquare p₃₀ p₃₂ p₂₁ p₄₁) :
|
||||
phsquare (p₁₀ ⬝* p₃₀) (p₁₂ ⬝* p₃₂) p₀₁ p₄₁ :=
|
||||
!trans_assoc ⬝ idp ◾** q ⬝ !trans_assoc⁻¹ ⬝ p ◾** idp ⬝ !trans_assoc
|
||||
|
||||
definition phvconcat (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (q : phsquare p₁₂ p₁₄ p₀₃ p₂₃) :
|
||||
phsquare p₁₀ p₁₄ (p₀₁ ⬝* p₀₃) (p₂₁ ⬝* p₂₃) :=
|
||||
(phhconcat p⁻¹ q⁻¹)⁻¹
|
||||
|
||||
definition phhdeg_square {p₁ p₂ : f ~* f'} (q : p₁ = p₂) : phsquare phomotopy.rfl phomotopy.rfl p₁ p₂ :=
|
||||
!refl_trans ⬝ q⁻¹ ⬝ !trans_refl⁻¹
|
||||
definition phvdeg_square {p₁ p₂ : f ~* f'} (q : p₁ = p₂) : phsquare p₁ p₂ phomotopy.rfl phomotopy.rfl :=
|
||||
!trans_refl ⬝ q ⬝ !refl_trans⁻¹
|
||||
|
||||
variables (p₀₁ p₁₀)
|
||||
definition phhrefl : phsquare phomotopy.rfl phomotopy.rfl p₀₁ p₀₁ := phhdeg_square idp
|
||||
definition phvrefl : phsquare p₁₀ p₁₀ phomotopy.rfl phomotopy.rfl := phvdeg_square idp
|
||||
variables {p₀₁ p₁₀}
|
||||
definition phhrfl : phsquare phomotopy.rfl phomotopy.rfl p₀₁ p₀₁ := phhrefl p₀₁
|
||||
definition phvrfl : phsquare p₁₀ p₁₀ phomotopy.rfl phomotopy.rfl := phvrefl p₁₀
|
||||
|
||||
/-
|
||||
The names are very baroque. The following stands for
|
||||
"pointed homotopy path-horizontal composition" (i.e. composition on the left with a path)
|
||||
The names are obtained by using the ones for squares, and putting "ph" in front of it.
|
||||
In practice, use the notation ⬝ph** defined below, which might be easier to remember
|
||||
-/
|
||||
definition phphconcat {p₀₁'} (p : p₀₁' = p₀₁) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||||
phsquare p₁₀ p₁₂ p₀₁' p₂₁ :=
|
||||
by induction p; exact q
|
||||
|
||||
definition phhpconcat {p₂₁'} (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (p : p₂₁ = p₂₁') :
|
||||
phsquare p₁₀ p₁₂ p₀₁ p₂₁' :=
|
||||
by induction p; exact q
|
||||
|
||||
definition phpvconcat {p₁₀'} (p : p₁₀' = p₁₀) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||||
phsquare p₁₀' p₁₂ p₀₁ p₂₁ :=
|
||||
by induction p; exact q
|
||||
|
||||
definition phvpconcat {p₁₂'} (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (p : p₁₂ = p₁₂') :
|
||||
phsquare p₁₀ p₁₂' p₀₁ p₂₁ :=
|
||||
by induction p; exact q
|
||||
|
||||
definition phhinverse (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₀⁻¹* p₁₂⁻¹* p₂₁ p₀₁ :=
|
||||
begin
|
||||
refine (eq_symm_trans_of_trans_eq _)⁻¹,
|
||||
refine !trans_assoc⁻¹ ⬝ _,
|
||||
refine (eq_trans_symm_of_trans_eq _)⁻¹,
|
||||
exact (eq_of_phsquare p)⁻¹
|
||||
end
|
||||
|
||||
definition phvinverse (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₂ p₁₀ p₀₁⁻¹* p₂₁⁻¹* :=
|
||||
(phhinverse p⁻¹)⁻¹
|
||||
|
||||
infix ` ⬝h** `:78 := phhconcat
|
||||
infix ` ⬝v** `:78 := phvconcat
|
||||
infixr ` ⬝ph** `:77 := phphconcat
|
||||
infixl ` ⬝hp** `:77 := phhpconcat
|
||||
infixr ` ⬝pv** `:77 := phpvconcat
|
||||
infixl ` ⬝vp** `:77 := phvpconcat
|
||||
postfix `⁻¹ʰ**`:(max+1) := phhinverse
|
||||
postfix `⁻¹ᵛ**`:(max+1) := phvinverse
|
||||
|
||||
definition phwhisker_rt (p : f ~* f₂₀) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||||
phsquare (p₁₀ ⬝* p⁻¹*) p₁₂ p₀₁ (p ⬝* p₂₁) :=
|
||||
!trans_assoc ⬝ idp ◾** (!trans_assoc⁻¹ ⬝ !trans_left_inv ◾** idp ⬝ !refl_trans) ⬝ q
|
||||
|
||||
definition phwhisker_br (p : f₂₂ ~* f) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||||
phsquare p₁₀ (p₁₂ ⬝* p) p₀₁ (p₂₁ ⬝* p) :=
|
||||
!trans_assoc⁻¹ ⬝ q ◾** idp ⬝ !trans_assoc
|
||||
|
||||
definition phmove_top_of_left' {p₀₁ : f ~* f₀₂} (p : f₀₀ ~* f)
|
||||
(q : phsquare p₁₀ p₁₂ (p ⬝* p₀₁) p₂₁) : phsquare (p⁻¹* ⬝* p₁₀) p₁₂ p₀₁ p₂₁ :=
|
||||
!trans_assoc ⬝ (eq_symm_trans_of_trans_eq (q ⬝ !trans_assoc)⁻¹)⁻¹
|
||||
|
||||
definition phmove_bot_of_left {p₀₁ : f₀₀ ~* f} (p : f ~* f₀₂)
|
||||
(q : phsquare p₁₀ p₁₂ (p₀₁ ⬝* p) p₂₁) : phsquare p₁₀ (p ⬝* p₁₂) p₀₁ p₂₁ :=
|
||||
q ⬝ !trans_assoc
|
||||
|
||||
definition passoc_phomotopy_right {A B C D : Type*} (h : C →* D) (g : B →* C) {f f' : A →* B}
|
||||
(p : f ~* f') : phsquare (passoc h g f) (passoc h g f')
|
||||
(pwhisker_left (h ∘* g) p) (pwhisker_left h (pwhisker_left g p)) :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
refine idp ◾** (ap (pwhisker_left h) !pwhisker_left_refl ⬝ !pwhisker_left_refl) ⬝ _ ⬝
|
||||
!pwhisker_left_refl⁻¹ ◾** idp,
|
||||
exact !trans_refl ⬝ !refl_trans⁻¹
|
||||
end
|
||||
|
||||
theorem passoc_phomotopy_middle {A B C D : Type*} (h : C →* D) {g g' : B →* C} (f : A →* B)
|
||||
(p : g ~* g') : phsquare (passoc h g f) (passoc h g' f)
|
||||
(pwhisker_right f (pwhisker_left h p)) (pwhisker_left h (pwhisker_right f p)) :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
rewrite [pwhisker_right_refl, pwhisker_left_refl],
|
||||
rewrite [pwhisker_right_refl, pwhisker_left_refl],
|
||||
exact phvrfl
|
||||
end
|
||||
|
||||
definition pwhisker_right_pwhisker_left {A B C : Type*} {g g' : B →* C} {f f' : A →* B}
|
||||
(p : g ~* g') (q : f ~* f') :
|
||||
phsquare (pwhisker_right f p) (pwhisker_right f' p) (pwhisker_left g q) (pwhisker_left g' q) :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
induction q using phomotopy_rec_on_idp,
|
||||
exact !pwhisker_right_refl ◾** !pwhisker_left_refl ⬝
|
||||
!pwhisker_left_refl⁻¹ ◾** !pwhisker_right_refl⁻¹
|
||||
end
|
||||
|
||||
definition pwhisker_left_phsquare (f : B →* C) (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||||
phsquare (pwhisker_left f p₁₀) (pwhisker_left f p₁₂)
|
||||
(pwhisker_left f p₀₁) (pwhisker_left f p₂₁) :=
|
||||
!pwhisker_left_trans⁻¹ ⬝ ap (pwhisker_left f) p ⬝ !pwhisker_left_trans
|
||||
|
||||
definition pwhisker_right_phsquare (f : C →* A) (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||||
phsquare (pwhisker_right f p₁₀) (pwhisker_right f p₁₂)
|
||||
(pwhisker_right f p₀₁) (pwhisker_right f p₂₁) :=
|
||||
!pwhisker_right_trans⁻¹ ⬝ ap (pwhisker_right f) p ⬝ !pwhisker_right_trans
|
||||
|
||||
end phsquare
|
||||
|
||||
definition phomotopy_of_eq_con {A B : Type*} {f g h : A →* B} (p : f = g) (q : g = h) :
|
||||
phomotopy_of_eq (p ⬝ q) = phomotopy_of_eq p ⬝* phomotopy_of_eq q :=
|
||||
begin induction q, induction p, exact !trans_refl⁻¹ end
|
||||
|
||||
definition pcompose_left_eq_of_phomotopy {A B C : Type*} (g : B →* C) {f f' : A →* B}
|
||||
(H : f ~* f') : ap (λf, g ∘* f) (eq_of_phomotopy H) = eq_of_phomotopy (pwhisker_left g H) :=
|
||||
begin
|
||||
induction H using phomotopy_rec_on_idp,
|
||||
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
|
||||
exact !pwhisker_left_refl⁻¹
|
||||
end
|
||||
|
||||
definition pcompose_right_eq_of_phomotopy {A B C : Type*} {g g' : B →* C} (f : A →* B)
|
||||
(H : g ~* g') : ap (λg, g ∘* f) (eq_of_phomotopy H) = eq_of_phomotopy (pwhisker_right f H) :=
|
||||
begin
|
||||
induction H using phomotopy_rec_on_idp,
|
||||
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
|
||||
exact !pwhisker_right_refl⁻¹
|
||||
end
|
||||
|
||||
definition phomotopy_of_eq_pcompose_left {A B C : Type*} (g : B →* C) {f f' : A →* B}
|
||||
(p : f = f') : phomotopy_of_eq (ap (λf, g ∘* f) p) = pwhisker_left g (phomotopy_of_eq p) :=
|
||||
begin
|
||||
induction p, exact !pwhisker_left_refl⁻¹
|
||||
end
|
||||
|
||||
definition phomotopy_of_eq_pcompose_right {A B C : Type*} {g g' : B →* C} (f : A →* B)
|
||||
(p : g = g') : phomotopy_of_eq (ap (λg, g ∘* f) p) = pwhisker_right f (phomotopy_of_eq p) :=
|
||||
begin
|
||||
induction p, exact !pwhisker_right_refl⁻¹
|
||||
end
|
||||
|
||||
definition phomotopy_mk_ppmap [constructor] {A B C : Type*} {f g : A →* ppmap B C} (p : Πa, f a ~* g a)
|
||||
(q : p pt ⬝* phomotopy_of_eq (respect_pt g) = phomotopy_of_eq (respect_pt f))
|
||||
: f ~* g :=
|
||||
begin
|
||||
apply phomotopy.mk (λa, eq_of_phomotopy (p a)),
|
||||
apply eq_of_fn_eq_fn (pmap_eq_equiv _ _), esimp [pmap_eq_equiv],
|
||||
refine !phomotopy_of_eq_con ⬝ _,
|
||||
refine !phomotopy_of_eq_of_phomotopy ◾** idp ⬝ q,
|
||||
end
|
||||
|
||||
definition pconst_pcompose_pconst (A B C : Type*) :
|
||||
pconst_pcompose (pconst A B) = pcompose_pconst (pconst B C) :=
|
||||
idp
|
||||
|
||||
definition pconst_pcompose_phomotopy_pconst {A B C : Type*} {f : A →* B} (p : f ~* pconst A B) :
|
||||
pconst_pcompose f = pwhisker_left (pconst B C) p ⬝* pcompose_pconst (pconst B C) :=
|
||||
begin
|
||||
assert H : Π(p : pconst A B ~* f),
|
||||
pconst_pcompose f = pwhisker_left (pconst B C) p⁻¹* ⬝* pcompose_pconst (pconst B C),
|
||||
{ intro p, induction p using phomotopy_rec_on_idp, reflexivity },
|
||||
refine H p⁻¹* ⬝ ap (pwhisker_left _) !symm_symm ◾** idp,
|
||||
end
|
||||
|
||||
definition passoc_pconst_right {A B C D : Type*} (h : C →* D) (g : B →* C) :
|
||||
passoc h g (pconst A B) ⬝* (pwhisker_left h (pcompose_pconst g) ⬝* pcompose_pconst h) =
|
||||
pcompose_pconst (h ∘* g) :=
|
||||
begin
|
||||
fapply phomotopy_eq,
|
||||
{ intro a, exact !idp_con },
|
||||
{ induction h with h h₀, induction g with g g₀, induction D with D d₀, induction C with C c₀,
|
||||
esimp at *, induction g₀, induction h₀, reflexivity }
|
||||
end
|
||||
|
||||
definition passoc_pconst_middle {A A' B B' : Type*} (g : B →* B') (f : A' →* A) :
|
||||
passoc g (pconst A B) f ⬝* (pwhisker_left g (pconst_pcompose f) ⬝* pcompose_pconst g) =
|
||||
pwhisker_right f (pcompose_pconst g) ⬝* pconst_pcompose f :=
|
||||
begin
|
||||
fapply phomotopy_eq,
|
||||
{ intro a, exact !idp_con ⬝ !idp_con },
|
||||
{ induction g with g g₀, induction f with f f₀, induction B' with D d₀, induction A with C c₀,
|
||||
esimp at *, induction g₀, induction f₀, reflexivity }
|
||||
end
|
||||
|
||||
definition passoc_pconst_left {A B C D : Type*} (g : B →* C) (f : A →* B) :
|
||||
phsquare (passoc (pconst C D) g f) (pconst_pcompose f)
|
||||
(pwhisker_right f (pconst_pcompose g)) (pconst_pcompose (g ∘* f)) :=
|
||||
begin
|
||||
fapply phomotopy_eq,
|
||||
{ intro a, exact !idp_con },
|
||||
{ induction g with g g₀, induction f with f f₀, induction C with C c₀, induction B with B b₀,
|
||||
esimp at *, induction g₀, induction f₀, reflexivity }
|
||||
end
|
||||
|
||||
definition ppcompose_left_pcompose [constructor] {A B C D : Type*} (h : C →* D) (g : B →* C) :
|
||||
@ppcompose_left A _ _ (h ∘* g) ~* ppcompose_left h ∘* ppcompose_left g :=
|
||||
begin
|
||||
fapply phomotopy_mk_ppmap,
|
||||
{ exact passoc h g },
|
||||
{ refine idp ◾** (!phomotopy_of_eq_con ⬝
|
||||
(ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾**
|
||||
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
|
||||
exact passoc_pconst_right h g }
|
||||
end
|
||||
|
||||
definition ppcompose_right_pcompose [constructor] {A B C D : Type*} (g : B →* C) (f : A →* B) :
|
||||
@ppcompose_right _ _ D (g ∘* f) ~* ppcompose_right f ∘* ppcompose_right g :=
|
||||
begin
|
||||
symmetry,
|
||||
fapply phomotopy_mk_ppmap,
|
||||
{ intro h, exact passoc h g f },
|
||||
{ refine idp ◾** !phomotopy_of_eq_of_phomotopy ⬝ _ ⬝ (!phomotopy_of_eq_con ⬝
|
||||
(ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
|
||||
exact passoc_pconst_left g f }
|
||||
end
|
||||
|
||||
definition ppcompose_left_ppcompose_right {A A' B B' : Type*} (g : B →* B') (f : A' →* A) :
|
||||
psquare (ppcompose_left g) (ppcompose_left g) (ppcompose_right f) (ppcompose_right f) :=
|
||||
begin
|
||||
fapply phomotopy_mk_ppmap,
|
||||
{ intro h, exact passoc g h f },
|
||||
{ refine idp ◾** (!phomotopy_of_eq_con ⬝
|
||||
(ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾**
|
||||
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (!phomotopy_of_eq_con ⬝
|
||||
(ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾**
|
||||
!phomotopy_of_eq_of_phomotopy)⁻¹,
|
||||
apply passoc_pconst_middle }
|
||||
end
|
||||
|
||||
definition pcompose_pconst_phomotopy {A B C : Type*} {f f' : B →* C} (p : f ~* f') :
|
||||
pwhisker_right (pconst A B) p ⬝* pcompose_pconst f' = pcompose_pconst f :=
|
||||
begin
|
||||
fapply phomotopy_eq,
|
||||
{ intro a, exact to_homotopy_pt p },
|
||||
{ induction p using phomotopy_rec_on_idp, induction C with C c₀, induction f with f f₀,
|
||||
esimp at *, induction f₀, reflexivity }
|
||||
end
|
||||
|
||||
definition pid_pconst (A B : Type*) : pcompose_pconst (pid B) = pid_pcompose (pconst A B) :=
|
||||
by reflexivity
|
||||
|
||||
definition pid_pconst_pcompose {A B C : Type*} (f : A →* B) :
|
||||
phsquare (pid_pcompose (pconst B C ∘* f))
|
||||
(pcompose_pconst (pid C))
|
||||
(pwhisker_left (pid C) (pconst_pcompose f))
|
||||
(pconst_pcompose f) :=
|
||||
begin
|
||||
fapply phomotopy_eq,
|
||||
{ reflexivity },
|
||||
{ induction f with f f₀, induction B with B b₀, esimp at *, induction f₀, reflexivity }
|
||||
end
|
||||
|
||||
definition ppcompose_left_pconst [constructor] (A B C : Type*) :
|
||||
@ppcompose_left A _ _ (pconst B C) ~* pconst (ppmap A B) (ppmap A C) :=
|
||||
begin
|
||||
fapply phomotopy_mk_ppmap,
|
||||
{ exact pconst_pcompose },
|
||||
{ refine idp ◾** !phomotopy_of_eq_idp ⬝ !phomotopy_of_eq_of_phomotopy⁻¹ }
|
||||
end
|
||||
|
||||
definition ppcompose_left_phomotopy [constructor] {A B C : Type*} {g g' : B →* C} (p : g ~* g') :
|
||||
@ppcompose_left A _ _ g ~* ppcompose_left g' :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition ppcompose_left_phomotopy_refl {A B C : Type*} (g : B →* C) :
|
||||
ppcompose_left_phomotopy (phomotopy.refl g) = phomotopy.refl (@ppcompose_left A _ _ g) :=
|
||||
!phomotopy_rec_on_idp_refl
|
||||
|
||||
/- a more explicit proof of ppcompose_left_phomotopy, which might be useful if we need to prove properties about it
|
||||
-/
|
||||
-- fapply phomotopy_mk_ppmap,
|
||||
-- { intro f, exact pwhisker_right f p },
|
||||
-- { refine ap (λx, _ ⬝* x) !phomotopy_of_eq_of_phomotopy ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
|
||||
-- exact pcompose_pconst_phomotopy p }
|
||||
|
||||
definition ppcompose_right_phomotopy [constructor] {A B C : Type*} {f f' : A →* B} (p : f ~* f') :
|
||||
@ppcompose_right _ _ C f ~* ppcompose_right f' :=
|
||||
begin
|
||||
induction p using phomotopy_rec_on_idp,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition pppcompose [constructor] (A B C : Type*) : ppmap B C →* ppmap (ppmap A B) (ppmap A C) :=
|
||||
pmap.mk ppcompose_left (eq_of_phomotopy !ppcompose_left_pconst)
|
||||
|
||||
section psquare
|
||||
|
||||
variables {A A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
||||
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
||||
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
||||
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
||||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||||
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||||
|
||||
definition ppcompose_left_psquare {A : Type*} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (@ppcompose_left A _ _ f₁₀) (ppcompose_left f₁₂)
|
||||
(ppcompose_left f₀₁) (ppcompose_left f₂₁) :=
|
||||
!ppcompose_left_pcompose⁻¹* ⬝* ppcompose_left_phomotopy p ⬝* !ppcompose_left_pcompose
|
||||
|
||||
definition ppcompose_right_psquare {A : Type*} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (@ppcompose_right _ _ A f₁₂) (ppcompose_right f₁₀)
|
||||
(ppcompose_right f₂₁) (ppcompose_right f₀₁) :=
|
||||
!ppcompose_right_pcompose⁻¹* ⬝* ppcompose_right_phomotopy p⁻¹* ⬝* !ppcompose_right_pcompose
|
||||
|
||||
definition trans_phomotopy_hconcat {f₀₁' f₀₁''}
|
||||
(q₂ : f₀₁'' ~* f₀₁') (q₁ : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
(q₂ ⬝* q₁) ⬝ph* p = q₂ ⬝ph* q₁ ⬝ph* p :=
|
||||
idp ◾** (ap (pwhisker_left f₁₂) !trans_symm ⬝ !pwhisker_left_trans) ⬝ !trans_assoc⁻¹
|
||||
|
||||
definition symm_phomotopy_hconcat {f₀₁'} (q : f₀₁ ~* f₀₁')
|
||||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : q⁻¹* ⬝ph* p = p ⬝* pwhisker_left f₁₂ q :=
|
||||
idp ◾** ap (pwhisker_left f₁₂) !symm_symm
|
||||
|
||||
definition refl_phomotopy_hconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : phomotopy.rfl ⬝ph* p = p :=
|
||||
idp ◾** (ap (pwhisker_left _) !refl_symm ⬝ !pwhisker_left_refl) ⬝ !trans_refl
|
||||
|
||||
local attribute phomotopy.rfl [reducible]
|
||||
theorem pwhisker_left_phomotopy_hconcat {f₀₁'} (r : f₀₁' ~* f₀₁)
|
||||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||||
pwhisker_left f₀₃ r ⬝ph* (p ⬝v* q) = (r ⬝ph* p) ⬝v* q :=
|
||||
by induction r using phomotopy_rec_on_idp; rewrite [pwhisker_left_refl, +refl_phomotopy_hconcat]
|
||||
|
||||
theorem pvcompose_pwhisker_left {f₀₁'} (r : f₀₁ ~* f₀₁')
|
||||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||||
(p ⬝v* q) ⬝* (pwhisker_left f₁₄ (pwhisker_left f₀₃ r)) = (p ⬝* pwhisker_left f₁₂ r) ⬝v* q :=
|
||||
by induction r using phomotopy_rec_on_idp; rewrite [+pwhisker_left_refl, + trans_refl]
|
||||
|
||||
definition phconcat2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : psquare f₃₀ f₃₂ f₂₁ f₄₁}
|
||||
(r : p = p') (s : q = q') : p ⬝h* q = p' ⬝h* q' :=
|
||||
ap011 phconcat r s
|
||||
|
||||
definition pvconcat2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : psquare f₁₂ f₁₄ f₀₃ f₂₃}
|
||||
(r : p = p') (s : q = q') : p ⬝v* q = p' ⬝v* q' :=
|
||||
ap011 pvconcat r s
|
||||
|
||||
definition phinverse2 {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
|
||||
(r : p = p') : p⁻¹ʰ* = p'⁻¹ʰ* :=
|
||||
ap phinverse r
|
||||
|
||||
definition pvinverse2 {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
|
||||
(r : p = p') : p⁻¹ᵛ* = p'⁻¹ᵛ* :=
|
||||
ap pvinverse r
|
||||
|
||||
definition phomotopy_hconcat2 {q q' : f₀₁' ~* f₀₁} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
|
||||
(r : q = q') (s : p = p') : q ⬝ph* p = q' ⬝ph* p' :=
|
||||
ap011 phomotopy_hconcat r s
|
||||
|
||||
definition hconcat_phomotopy2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : f₂₁' ~* f₂₁}
|
||||
(r : p = p') (s : q = q') : p ⬝hp* q = p' ⬝hp* q' :=
|
||||
ap011 hconcat_phomotopy r s
|
||||
|
||||
definition phomotopy_vconcat2 {q q' : f₁₀' ~* f₁₀} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
|
||||
(r : q = q') (s : p = p') : q ⬝pv* p = q' ⬝pv* p' :=
|
||||
ap011 phomotopy_vconcat r s
|
||||
|
||||
definition vconcat_phomotopy2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : f₁₂' ~* f₁₂}
|
||||
(r : p = p') (s : q = q') : p ⬝vp* q = p' ⬝vp* q' :=
|
||||
ap011 vconcat_phomotopy r s
|
||||
|
||||
-- for consistency, should there be a second star here?
|
||||
infix ` ◾h* `:79 := phconcat2
|
||||
infix ` ◾v* `:79 := pvconcat2
|
||||
infixl ` ◾hp* `:79 := hconcat_phomotopy2
|
||||
infixr ` ◾ph* `:79 := phomotopy_hconcat2
|
||||
infixl ` ◾vp* `:79 := vconcat_phomotopy2
|
||||
infixr ` ◾pv* `:79 := phomotopy_vconcat2
|
||||
postfix `⁻²ʰ*`:(max+1) := phinverse2
|
||||
postfix `⁻²ᵛ*`:(max+1) := pvinverse2
|
||||
|
||||
end psquare
|
||||
|
||||
variables {X X' Y Y' Z : Type*}
|
||||
definition pap1 [constructor] (X Y : Type*) : ppmap X Y →* ppmap (Ω X) (Ω Y) :=
|
||||
pmap.mk ap1 (eq_of_phomotopy !ap1_pconst)
|
||||
|
||||
definition ap1_gen_const {A B : Type} {a₁ a₂ : A} (b : B) (p : a₁ = a₂) :
|
||||
ap1_gen (const A b) idp idp p = idp :=
|
||||
ap1_gen_idp_left (const A b) p ⬝ ap_constant p b
|
||||
|
||||
definition ap1_gen_compose_const_left
|
||||
{A B C : Type} (c : C) (f : A → B) {a₁ a₂ : A} (p : a₁ = a₂) :
|
||||
ap1_gen_compose (const B c) f idp idp idp idp p ⬝
|
||||
ap1_gen_const c (ap1_gen f idp idp p) =
|
||||
ap1_gen_const c p :=
|
||||
begin induction p, reflexivity end
|
||||
|
||||
definition ap1_gen_compose_const_right
|
||||
{A B C : Type} (g : B → C) (b : B) {a₁ a₂ : A} (p : a₁ = a₂) :
|
||||
ap1_gen_compose g (const A b) idp idp idp idp p ⬝
|
||||
ap (ap1_gen g idp idp) (ap1_gen_const b p) =
|
||||
ap1_gen_const (g b) p :=
|
||||
begin induction p, reflexivity end
|
||||
|
||||
definition ap1_pcompose_pconst_left {A B C : Type*} (f : A →* B) :
|
||||
phsquare (ap1_pcompose (pconst B C) f)
|
||||
(ap1_pconst A C)
|
||||
(ap1_phomotopy (pconst_pcompose f))
|
||||
(pwhisker_right (Ω→ f) (ap1_pconst B C) ⬝* pconst_pcompose (Ω→ f)) :=
|
||||
begin
|
||||
induction A with A a₀, induction B with B b₀, induction C with C c₀, induction f with f f₀,
|
||||
esimp at *, induction f₀,
|
||||
refine idp ◾** !trans_refl ⬝ _ ⬝ !refl_trans⁻¹ ⬝ !ap1_phomotopy_refl⁻¹ ◾** idp,
|
||||
fapply phomotopy_eq,
|
||||
{ exact ap1_gen_compose_const_left c₀ f },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition ap1_pcompose_pconst_right {A B C : Type*} (g : B →* C) :
|
||||
phsquare (ap1_pcompose g (pconst A B))
|
||||
(ap1_pconst A C)
|
||||
(ap1_phomotopy (pcompose_pconst g))
|
||||
(pwhisker_left (Ω→ g) (ap1_pconst A B) ⬝* pcompose_pconst (Ω→ g)) :=
|
||||
begin
|
||||
induction A with A a₀, induction B with B b₀, induction C with C c₀, induction g with g g₀,
|
||||
esimp at *, induction g₀,
|
||||
refine idp ◾** !trans_refl ⬝ _ ⬝ !refl_trans⁻¹ ⬝ !ap1_phomotopy_refl⁻¹ ◾** idp,
|
||||
fapply phomotopy_eq,
|
||||
{ exact ap1_gen_compose_const_right g b₀ },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition pap1_natural_left [constructor] (f : X' →* X) :
|
||||
psquare (pap1 X Y) (pap1 X' Y) (ppcompose_right f) (ppcompose_right (Ω→ f)) :=
|
||||
begin
|
||||
fapply phomotopy_mk_ppmap,
|
||||
{ intro g, exact !ap1_pcompose⁻¹* },
|
||||
{ refine idp ◾** (ap phomotopy_of_eq (!ap1_eq_of_phomotopy ◾ idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝
|
||||
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (ap phomotopy_of_eq (!pcompose_right_eq_of_phomotopy ◾
|
||||
idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝ !phomotopy_of_eq_of_phomotopy)⁻¹,
|
||||
apply symm_trans_eq_of_eq_trans, exact (ap1_pcompose_pconst_left f)⁻¹ }
|
||||
end
|
||||
|
||||
definition pap1_natural_right [constructor] (f : Y →* Y') :
|
||||
psquare (pap1 X Y) (pap1 X Y') (ppcompose_left f) (ppcompose_left (Ω→ f)) :=
|
||||
begin
|
||||
fapply phomotopy_mk_ppmap,
|
||||
{ intro g, exact !ap1_pcompose⁻¹* },
|
||||
{ refine idp ◾** (ap phomotopy_of_eq (!ap1_eq_of_phomotopy ◾ idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝
|
||||
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (ap phomotopy_of_eq (!pcompose_left_eq_of_phomotopy ◾
|
||||
idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝ !phomotopy_of_eq_of_phomotopy)⁻¹,
|
||||
apply symm_trans_eq_of_eq_trans, exact (ap1_pcompose_pconst_right f)⁻¹ }
|
||||
end
|
||||
|
||||
end pointed
|
|
@ -90,6 +90,29 @@ namespace prod
|
|||
definition ap_prod_mk_right (p : b = b') : ap (λb, prod.mk a b) p = prod_eq idp p :=
|
||||
ap_eq_ap011_right prod.mk a p
|
||||
|
||||
definition pair_eq_eta {A B : Type} {u v : A × B}
|
||||
(p : u = v) : pair_eq (p..1) (p..2) = prod.eta u ⬝ p ⬝ (prod.eta v)⁻¹ :=
|
||||
by induction p; induction u; reflexivity
|
||||
|
||||
definition prod_eq_eq {A B : Type} {u v : A × B}
|
||||
{p₁ q₁ : u.1 = v.1} {p₂ q₂ : u.2 = v.2} (α₁ : p₁ = q₁) (α₂ : p₂ = q₂)
|
||||
: prod_eq p₁ p₂ = prod_eq q₁ q₂ :=
|
||||
by cases α₁; cases α₂; reflexivity
|
||||
|
||||
definition prod_eq_assemble {A B : Type} {u v : A × B}
|
||||
{p q : u = v} (α₁ : p..1 = q..1) (α₂ : p..2 = q..2) : p = q :=
|
||||
(prod_eq_eta p)⁻¹ ⬝ prod.prod_eq_eq α₁ α₂ ⬝ prod_eq_eta q
|
||||
|
||||
definition eq_pr1_concat {A B : Type} {u v w : A × B}
|
||||
(p : u = v) (q : v = w)
|
||||
: (p ⬝ q)..1 = p..1 ⬝ q..1 :=
|
||||
by cases q; reflexivity
|
||||
|
||||
definition eq_pr2_concat {A B : Type} {u v w : A × B}
|
||||
(p : u = v) (q : v = w)
|
||||
: (p ⬝ q)..2 = p..2 ⬝ q..2 :=
|
||||
by cases q; reflexivity
|
||||
|
||||
/- Groupoid structure -/
|
||||
definition prod_eq_inv (p : a = a') (q : b = b') : (prod_eq p q)⁻¹ = prod_eq p⁻¹ q⁻¹ :=
|
||||
by cases p; cases q; reflexivity
|
||||
|
@ -125,6 +148,19 @@ namespace prod
|
|||
apply idpo
|
||||
end
|
||||
|
||||
open prod.ops
|
||||
definition prod_pathover_equiv {A : Type} {B C : A → Type} {a a' : A} (p : a = a')
|
||||
(x : B a × C a) (x' : B a' × C a') : x =[p] x' ≃ x.1 =[p] x'.1 × x.2 =[p] x'.2 :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro q, induction q, constructor: constructor },
|
||||
{ intro v, induction v with q r, exact prod_pathover _ _ _ q r },
|
||||
{ intro v, induction v with q r, induction x with b c, induction x' with b' c',
|
||||
esimp at *, induction q, refine idp_rec_on r _, reflexivity },
|
||||
{ intro q, induction q, induction x with b c, reflexivity }
|
||||
end
|
||||
|
||||
|
||||
/-
|
||||
TODO:
|
||||
* define the projections from the type u =[p] v
|
||||
|
@ -301,6 +337,8 @@ namespace prod
|
|||
definition ptprod [constructor] {n : ℕ₋₂} (A B : n-Type*) : n-Type* :=
|
||||
ptrunctype.mk' n (A × B)
|
||||
|
||||
definition pprod_functor [constructor] {A B C D : Type*} (f : A →* C) (g : B →* D) : A ×* B →* C ×* D :=
|
||||
pmap.mk (prod_functor f g) (prod_eq (respect_pt f) (respect_pt g))
|
||||
|
||||
|
||||
end prod
|
||||
|
|
|
@ -214,6 +214,25 @@ namespace sigma
|
|||
induction s using idp_rec_on, apply idpo
|
||||
end
|
||||
|
||||
definition pathover_pr1 [unfold 9] {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||||
{a a' : A} {p : a = a'} {x : Σb, C a b} {x' : Σb', C a' b'}
|
||||
(q : x =[p] x') : x.1 =[p] x'.1 :=
|
||||
begin induction q, constructor end
|
||||
|
||||
definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} (C : Πa, B a → Type)
|
||||
{a a' : A} (p : a = a') (x : Σb, C a b) (x' : Σb', C a' b')
|
||||
[Πa b, is_prop (C a b)] : x =[p] x' ≃ x.1 =[p] x'.1 :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ exact pathover_pr1 },
|
||||
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
|
||||
apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
||||
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
|
||||
have c = c', from !is_prop.elim, induction this,
|
||||
rewrite [▸*, is_prop_elimo_self (C a) c] },
|
||||
{ intro q, induction q, induction x with b c, rewrite [▸*, is_prop_elimo_self (C a) c] }
|
||||
end
|
||||
|
||||
/-
|
||||
TODO:
|
||||
* define the projections from the type u =[p] v
|
||||
|
@ -274,6 +293,10 @@ namespace sigma
|
|||
ap (sigma_functor f g) (sigma_eq p q) = sigma_eq (ap f p) (pathover.rec_on q idpo) :=
|
||||
by induction q; reflexivity
|
||||
|
||||
definition sigma_ua {A B : Type} (C : A ≃ B → Type) :
|
||||
(Σ(p : A = B), C (equiv_of_eq p)) ≃ Σ(e : A ≃ B), C e :=
|
||||
sigma_equiv_sigma_left' !eq_equiv_equiv
|
||||
|
||||
-- definition ap_sigma_functor_eq (p : u.1 = v.1) (q : u.2 =[p] v.2)
|
||||
-- : ap (sigma_functor f g) (sigma_eq p q) =
|
||||
-- sigma_eq (ap f p)
|
||||
|
@ -511,7 +534,6 @@ namespace sigma
|
|||
(b : B a) (b' : B a') : a = a' :=
|
||||
(is_prop.elim ⟨a, b⟩ ⟨a', b'⟩)..1
|
||||
|
||||
|
||||
end sigma
|
||||
|
||||
attribute sigma.is_trunc_sigma [instance] [priority 1490]
|
||||
|
|
|
@ -8,10 +8,10 @@ Properties of trunc_index, is_trunc, trunctype, trunc, and the pointed versions
|
|||
|
||||
-- NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .prop_trunc
|
||||
|
||||
import .pointed ..function algebra.order types.nat.order
|
||||
import .pointed ..function algebra.order types.nat.order types.unit
|
||||
|
||||
open eq sigma sigma.ops pi function equiv trunctype
|
||||
is_equiv prod pointed nat is_trunc algebra sum
|
||||
is_equiv prod pointed nat is_trunc algebra sum unit
|
||||
|
||||
/- basic computation with ℕ₋₂, its operations and its order -/
|
||||
namespace trunc_index
|
||||
|
@ -471,6 +471,22 @@ namespace is_trunc
|
|||
have is_trunc (0+[ℕ₋₂]n) A, by rewrite [trunc_index.zero_add]; exact _,
|
||||
is_trunc_loopn 0 n A
|
||||
|
||||
definition pequiv_punit_of_is_contr [constructor] (A : Type*) (H : is_contr A) : A ≃* punit :=
|
||||
pequiv_of_equiv (equiv_unit_of_is_contr A) (@is_prop.elim unit _ _ _)
|
||||
|
||||
definition pequiv_punit_of_is_contr' [constructor] (A : Type) (H : is_contr A)
|
||||
: pointed.MK A (center A) ≃* punit :=
|
||||
pequiv_punit_of_is_contr (pointed.MK A (center A)) H
|
||||
|
||||
definition is_trunc_is_contr_fiber (n : ℕ₋₂) {A B : Type} (f : A → B)
|
||||
(b : B) [is_trunc n A] [is_trunc n B] : is_trunc n (is_contr (fiber f b)) :=
|
||||
begin
|
||||
cases n,
|
||||
{ apply is_contr_of_inhabited_prop, apply is_contr_fun_of_is_equiv,
|
||||
apply is_equiv_of_is_contr },
|
||||
{ apply is_trunc_succ_of_is_prop }
|
||||
end
|
||||
|
||||
end is_trunc open is_trunc
|
||||
|
||||
namespace trunc
|
||||
|
@ -735,9 +751,10 @@ namespace trunc
|
|||
revert n, induction k with k IH: intro n,
|
||||
{ reflexivity},
|
||||
{ refine _ ⬝e* loop_ptrunc_pequiv n (Ω[k] A),
|
||||
rewrite [loopn_succ_eq], apply loop_pequiv_loop,
|
||||
change Ω (Ω[k] (ptrunc (n + succ k) A)) ≃* Ω (ptrunc (n + 1) (Ω[k] A)),
|
||||
apply loop_pequiv_loop,
|
||||
refine _ ⬝e* IH (n.+1),
|
||||
rewrite succ_add_nat}
|
||||
exact loopn_pequiv_loopn k (pequiv_of_eq (ap (λn, ptrunc n A) !succ_add_nat⁻¹)) }
|
||||
end
|
||||
|
||||
definition loopn_ptrunc_pequiv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
|
||||
|
|
|
@ -30,4 +30,5 @@ Types in HoTT:
|
|||
* [trunc](trunc.hlean): truncation levels, n-types, truncation
|
||||
* [pullback](pullback.hlean)
|
||||
* [univ](univ.hlean)
|
||||
* [type_functor](type_functor.hlean)
|
||||
* [type_functor](type_functor.hlean)
|
||||
* [pointed2](pointed2.hlean): equalities between pointed homotopies, squares of poitned maps and pointed homotopies, and pointed maps in or out of `ppmap A B`
|
||||
|
|
Loading…
Reference in a new issue