refactor(library/data/finset/card.lean): add useful facts, shorter proof of eq_card_of_eq_subset

This commit is contained in:
Jeremy Avigad 2015-06-20 21:37:37 +10:00 committed by Leonardo de Moura
parent b8243934de
commit 7d204fdd91
2 changed files with 27 additions and 30 deletions

View file

@ -254,15 +254,13 @@ begin
{intro h, existsi a, apply mem_insert} {intro h, existsi a, apply mem_insert}
end end
open perm theorem eq_empty_of_card_eq_zero {s : finset A} (H : card s = 0) : s = ∅ :=
theorem empty_of_card_eq_zero {s : finset A} : card s = 0 → s = ∅ :=
quot.induction_on s (λ l e,
assert enil : elt_of l = [], from eq_nil_of_length_eq_zero e,
quot.sound
begin begin
change elt_of l ~ [], induction s with a s' H1 IH,
rewrite enil { reflexivity },
end) { rewrite (card_insert_of_not_mem H1) at H, apply nat.no_confusion H}
end
end insert end insert
/- erase -/ /- erase -/

View file

@ -49,12 +49,17 @@ theorem card_union_of_disjoint {s₁ s₂ : finset A} (H : s₁ ∩ s₂ = ∅)
card (s₁ s₂) = card s₁ + card s₂ := card (s₁ s₂) = card s₁ + card s₂ :=
by rewrite [card_union, H] by rewrite [card_union, H]
theorem card_le_card_of_subset {s₁ s₂ : finset A} (H : s₁ ⊆ s₂) : card s₁ ≤ card s₂ := theorem card_eq_card_add_card_diff {s₁ s₂ : finset A} (H : s₁ ⊆ s₂) :
card s₂ = card s₁ + card (s₂ \ s₁) :=
have H1 : s₁ ∩ (s₂ \ s₁) = ∅, have H1 : s₁ ∩ (s₂ \ s₁) = ∅,
from inter_eq_empty (take x, assume H1 H2, not_mem_of_mem_diff H2 H1), from inter_eq_empty (take x, assume H1 H2, not_mem_of_mem_diff H2 H1),
calc calc
card s₂ = card (s₁ (s₂ \ s₁)) : union_diff_cancel H card s₂ = card (s₁ (s₂ \ s₁)) : union_diff_cancel H
... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1 ... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1
theorem card_le_card_of_subset {s₁ s₂ : finset A} (H : s₁ ⊆ s₂) : card s₁ ≤ card s₂ :=
calc
card s₂ = card s₁ + card (s₂ \ s₁) : card_eq_card_add_card_diff H
... ≥ card s₁ : le_add_right ... ≥ card s₁ : le_add_right
section card_image section card_image
@ -151,6 +156,20 @@ finset.induction_on s
end card_image end card_image
theorem card_pos_of_mem {a : A} {s : finset A} (H : a ∈ s) : card s > 0 :=
begin
induction s with a s' H1 IH,
{ contradiction },
{ rewrite (card_insert_of_not_mem H1), apply succ_pos }
end
theorem eq_of_card_eq_of_subset {s₁ s₂ : finset A} (Hcard : card s₁ = card s₂) (Hsub : s₁ ⊆ s₂) :
s₁ = s₂ :=
have H : card s₁ + 0 = card s₁ + card (s₂ \ s₁),
by rewrite [Hcard at {1}, card_eq_card_add_card_diff Hsub],
assert H1 : s₂ \ s₁ = ∅, from eq_empty_of_card_eq_zero (add.left_cancel H)⁻¹,
by rewrite [-union_diff_cancel Hsub, H1, union_empty]
theorem Sum_const_eq_card_mul (s : finset A) (n : nat) : (∑ x ∈ s, n) = card s * n := theorem Sum_const_eq_card_mul (s : finset A) (n : nat) : (∑ x ∈ s, n) = card s * n :=
begin begin
induction s with a s' H IH, induction s with a s' H IH,
@ -190,24 +209,4 @@ finset.induction_on s
card_union_of_disjoint H8, H6]) card_union_of_disjoint H8, H6])
end deceqB end deceqB
lemma eq_of_card_eq_of_subset {s₁ s₂ : finset A} : card s₁ = card s₂ → s₁ ⊆ s₂ → s₁ = s₂ :=
have aux : ∀ (n : nat) (s₁ s₂ : finset A), card s₁ = n → card s₂ = n → s₁ ⊆ s₂ → s₁ = s₂,
begin
clear s₁ s₂,
intro n, induction n with n ih,
{intro s₁ s₂ e₁ e₂ is_sub, rewrite [empty_of_card_eq_zero e₁, empty_of_card_eq_zero e₂] },
{intro s₁ s₂ e₁ e₂ is_sub,
have ne : s₁ ≠ ∅, from non_empty_of_card_succ e₁,
cases (exists_of_not_empty ne) with a ains₁,
have ains₂ : a ∈ s₂, from mem_of_subset_of_mem is_sub ains₁,
have e₁' : card (erase a s₁) = n, by rewrite [card_erase_of_mem ains₁, e₁],
have e₂' : card (erase a s₂) = n, by rewrite [card_erase_of_mem ains₂, e₂],
have is_sub' : erase a s₁ ⊆ erase a s₂, from erase_subset_erase_of_subset is_sub,
have eq₁ : erase a s₁ = erase a s₂, from ih _ _ e₁' e₂' is_sub',
have eq₂ : insert a (erase a s₁) = insert a (erase a s₂), by rewrite eq₁,
rewrite [insert_erase ains₁ at eq₂, insert_erase ains₂ at eq₂],
exact eq₂}
end,
λ e h, aux (card s₂) s₁ s₂ e rfl h
end finset end finset