From 7d6b5952891e128141311db5491981de315636e5 Mon Sep 17 00:00:00 2001 From: Rob Lewis Date: Wed, 29 Jul 2015 18:06:09 -0400 Subject: [PATCH] feat(library/data/real): complete proof of the supremum property pending two integer theorems --- library/data/real/complete.lean | 153 +++++++++++++++++++++++++++++--- 1 file changed, 141 insertions(+), 12 deletions(-) diff --git a/library/data/real/complete.lean b/library/data/real/complete.lean index c8f7799d6..516642c54 100644 --- a/library/data/real/complete.lean +++ b/library/data/real/complete.lean @@ -406,7 +406,145 @@ theorem converges_of_cauchy {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : rewrite [-*pnat.mul.assoc, p_add_fractions], apply rat.le.refl end +-- archimedean property +section ints +open int + +theorem archimedean (x : ℝ) : ∃ z : ℤ, x ≤ of_rat (of_int z) := + begin + apply quot.induction_on x, + intro s, + cases (s.bdd_of_regular (s.reg_seq.is_reg s)) with [b, Hb], + existsi (ubound b), + have H : s.s_le (s.reg_seq.sq s) (s.const (rat.of_nat (ubound b))), begin + apply s.s_le_of_le_pointwise (s.reg_seq.is_reg s), + apply s.const_reg, + intro n, + apply rat.le.trans, + apply Hb, + apply ubound_ge + end, + apply H + end + +set_option pp.coercions true +theorem archimedean_strict (x : ℝ) : ∃ z : ℤ, x < of_rat (of_int z) := + begin + cases archimedean x with [z, Hz], + existsi z + 1, + apply lt_of_le_of_lt, + apply Hz, + apply of_rat_lt_of_rat_of_lt, + apply iff.mpr !of_int_lt_of_int, + apply int.lt_add_of_pos_right, + apply dec_trivial + end + +theorem archimedean' (x : ℝ) : ∃ z : ℤ, x ≥ of_rat (of_int z) := + begin + cases archimedean (-x) with [z, Hz], + existsi -z, + rewrite [of_int_neg, -of_rat_neg], -- change the direction of of_rat_neg + apply iff.mp !neg_le_iff_neg_le Hz + end + +theorem archimedean_strict' (x : ℝ) : ∃ z : ℤ, x > of_rat (of_int z) := + begin + cases archimedean_strict (-x) with [z, Hz], + existsi -z, + rewrite [of_int_neg, -of_rat_neg], + apply iff.mp !neg_lt_iff_neg_lt Hz + end + +theorem ex_smallest_of_bdd {P : ℤ → Prop} (Hbdd : ∃ b : ℤ, ∀ z : ℤ, z ≤ b → ¬ P z) + (Hinh : ∃ z : ℤ, P z) : ∃ lb : ℤ, P lb ∧ (∀ z : ℤ, z < lb → ¬ P z) := + sorry + +theorem ex_largest_of_bdd {P : ℤ → Prop} (Hbdd : ∃ b : ℤ, ∀ z : ℤ, z ≥ b → ¬ P z) + (Hinh : ∃ z : ℤ, P z) : ∃ ub : ℤ, P ub ∧ (∀ z : ℤ, z > ub → ¬ P z) := sorry + +definition ex_floor (x : ℝ) := + (@ex_largest_of_bdd (λ z, x ≥ of_rat (of_int z)) + (begin + existsi (some (archimedean_strict x)), + let Har := some_spec (archimedean_strict x), + intros z Hz, + apply not_le_of_gt, + apply lt_of_lt_of_le, + apply Har, + have H : of_rat (of_int (some (archimedean_strict x))) ≤ of_rat (of_int z), begin + apply of_rat_le_of_rat_of_le, + apply iff.mpr !of_int_le_of_int, + apply Hz + end, + exact H + end) + (begin + existsi some (archimedean' x), + apply some_spec (archimedean' x) + end)) + +definition floor (x : ℝ) := + some (ex_floor x) + +definition ceil (x : ℝ) := - floor (-x) + +theorem floor_spec (x : ℝ) : of_rat (of_int (floor x)) ≤ x := + and.left (some_spec (ex_floor x)) + +theorem floor_largest {x : ℝ} {z : ℤ} (Hz : z > floor x) : x < of_rat (of_int z) := + begin + apply lt_of_not_ge, + cases some_spec (ex_floor x), + apply a_1 _ Hz + end + +theorem ceil_spec (x : ℝ) : of_rat (of_int (ceil x)) ≥ x := + begin + rewrite [↑ceil, of_int_neg, -of_rat_neg], + apply iff.mp !le_neg_iff_le_neg, + apply floor_spec + end + +theorem ceil_smallest {x : ℝ} {z : ℤ} (Hz : z < ceil x) : x > of_rat (of_int z) := + begin + rewrite ↑ceil at Hz, + let Hz' := floor_largest (iff.mp !int.lt_neg_iff_lt_neg Hz), + rewrite [of_int_neg at Hz', -of_rat_neg at Hz'], + apply lt_of_neg_lt_neg Hz' + end + +theorem floor_succ (x : ℝ) : (floor x) + 1 = floor (x + 1) := + begin + apply by_contradiction, + intro H, + cases int.lt_or_gt_of_ne H with [Hlt, Hgt], + let Hl := floor_largest (iff.mp !int.add_lt_add_iff_lt_sub_right Hlt), + rewrite [of_int_sub at Hl, -of_rat_sub at Hl], + let Hl' := iff.mpr !add_lt_add_iff_lt_sub_right Hl, + apply (not_le_of_gt Hl') !floor_spec, + let Hl := floor_largest Hgt, + rewrite [of_int_add at Hl, -of_rat_add at Hl], + let Hl' := lt_of_add_lt_add_right Hl, + apply (not_le_of_gt Hl') !floor_spec + end + +theorem floor_succ_lt (x : ℝ) : floor (x - 1) < floor x := + begin + apply @int.lt_of_add_lt_add_right _ 1, + rewrite [floor_succ (x - 1), sub_add_cancel], + apply int.lt_add_of_pos_right dec_trivial + end + +theorem ceil_succ (x : ℝ) : ceil x < ceil (x + 1) := + begin + rewrite [↑ceil, neg_add], + apply int.neg_lt_neg, + apply floor_succ_lt + end + +end ints -------------------------------------------------- -- supremum property -- this development roughly follows the proof of completeness done in Isabelle. @@ -435,16 +573,7 @@ hypothesis inh : X elt parameter bound : ℝ hypothesis bdd : ub bound --- floor and ceil should be defined directly. I'm not sure of the best way to do this yet. -parameter floor : ℝ → int -parameter ceil : ℝ → int -hypothesis floor_spec : ∀ x : ℝ, of_rat (of_int (floor x)) ≤ x -hypothesis ceil_spec : ∀ x : ℝ, of_rat (of_int (ceil x)) ≥ x -hypothesis floor_succ : ∀ x : ℝ, int.lt (floor (x - 1)) (floor x) -hypothesis ceil_succ : ∀ x : ℝ, int.lt (ceil x) (ceil (x + 1)) - -include inh bdd floor_spec ceil_spec floor_succ ceil_succ - +include inh bdd -- this should exist somewhere, no? I can't find it theorem not_forall_of_exists_not {A : Type} {P : A → Prop} (H : ∃ a : A, ¬ P a) : @@ -471,7 +600,7 @@ theorem under_spec1 : of_rat under < elt := have H : of_rat under < of_rat (of_int (floor elt)), begin apply of_rat_lt_of_rat_of_lt, apply iff.mpr !of_int_lt_of_int, - apply floor_succ + apply floor_succ_lt end, lt_of_lt_of_le H !floor_spec @@ -843,7 +972,7 @@ theorem under_over_equiv : p_under_seq ≡ p_over_seq := theorem under_over_eq : sup_under = sup_over := quot.sound under_over_equiv -theorem supremum_of_complete : ∃ x : ℝ, sup x := +theorem supremum_property : ∃ x : ℝ, sup x := exists.intro sup_over (and.intro over_bound (under_over_eq ▸ under_lowest_bound)) end supremum