chore(examples/lean): rename examples
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
f1b97b18b4
commit
7eaade4ceb
2 changed files with 12 additions and 42 deletions
|
@ -1,20 +0,0 @@
|
|||
(**
|
||||
-- import macros for, assume, mp, ...
|
||||
import("macros.lua")
|
||||
**)
|
||||
|
||||
Definition Set (A : Type) : Type := A → Bool
|
||||
|
||||
Definition element {A : Type} (x : A) (s : Set A) := s x
|
||||
Infix 60 ∈ : element
|
||||
|
||||
Definition subset {A : Type} (s1 : Set A) (s2 : Set A) := ∀ x, x ∈ s1 ⇒ x ∈ s2
|
||||
Infix 50 ⊆ : subset
|
||||
|
||||
Theorem SubsetTrans (A : Type) : ∀ s1 s2 s3 : Set A, s1 ⊆ s2 ⇒ s2 ⊆ s3 ⇒ s1 ⊆ s3 :=
|
||||
for s1 s2 s3, assume (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3),
|
||||
show s1 ⊆ s3,
|
||||
for x, assume Hin : x ∈ s1,
|
||||
show x ∈ s3,
|
||||
let L1 : x ∈ s2 := mp (instantiate H1 x) Hin
|
||||
in mp (instantiate H2 x) L1
|
|
@ -1,3 +1,8 @@
|
|||
(**
|
||||
-- import macros for, assume, mp, ...
|
||||
import("macros.lua")
|
||||
**)
|
||||
|
||||
Definition Set (A : Type) : Type := A → Bool
|
||||
|
||||
Definition element {A : Type} (x : A) (s : Set A) := s x
|
||||
|
@ -6,25 +11,10 @@ Infix 60 ∈ : element
|
|||
Definition subset {A : Type} (s1 : Set A) (s2 : Set A) := ∀ x, x ∈ s1 ⇒ x ∈ s2
|
||||
Infix 50 ⊆ : subset
|
||||
|
||||
Theorem SubsetProp {A : Type} {s1 s2 : Set A} {x : A} (H1 : s1 ⊆ s2) (H2 : x ∈ s1) : x ∈ s2 :=
|
||||
MP (ForallElim H1 x) H2
|
||||
|
||||
Theorem SubsetTrans {A : Type} {s1 s2 s3 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3) : s1 ⊆ s3 :=
|
||||
ForallIntro (λ x,
|
||||
Discharge (λ Hin : x ∈ s1,
|
||||
let L1 : x ∈ s2 := SubsetProp H1 Hin,
|
||||
L2 : x ∈ s3 := SubsetProp H2 L1
|
||||
in L2)).
|
||||
|
||||
Definition transitive {A : Type} (R : A → A → Bool) := ∀ x y z, R x y ⇒ R y z ⇒ R x z
|
||||
|
||||
Theorem SubsetTrans2 {A : Type} : transitive (@subset A) :=
|
||||
ForallIntro (λ s1, ForallIntro (λ s2, ForallIntro (λ s3,
|
||||
Discharge (λ H1, (Discharge (λ H2,
|
||||
SubsetTrans H1 H2)))))).
|
||||
|
||||
Theorem SubsetRefl {A : Type} (s : Set A) : s ⊆ s :=
|
||||
ForallIntro (λ x, Discharge (λ H : x ∈ s, H))
|
||||
|
||||
Definition union {A : Type} (s1 : Set A) (s2 : Set A) := λ x, x ∈ s1 ∨ x ∈ s2
|
||||
Infix 55 ∪ : union
|
||||
Theorem SubsetTrans (A : Type) : ∀ s1 s2 s3 : Set A, s1 ⊆ s2 ⇒ s2 ⊆ s3 ⇒ s1 ⊆ s3 :=
|
||||
for s1 s2 s3, assume (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3),
|
||||
show s1 ⊆ s3,
|
||||
for x, assume Hin : x ∈ s1,
|
||||
show x ∈ s3,
|
||||
let L1 : x ∈ s2 := mp (instantiate H1 x) Hin
|
||||
in mp (instantiate H2 x) L1
|
||||
|
|
Loading…
Reference in a new issue