feat(library/data/nat/bigops): sums and products over intervals of natural numbers

This commit is contained in:
Jeremy Avigad 2015-12-31 12:51:20 -08:00 committed by Leonardo de Moura
parent 12a69bad04
commit 7f25dd6646
3 changed files with 219 additions and 1 deletions

View file

@ -7,7 +7,7 @@ Algebraic structures.
* [relation](relation.lean)
* [binary](binary.lean) : binary operations
* [order](order.lean)
* [intervals](intervals.lean)
* [interval](interval.lean)
* [lattice](lattice.lean)
* [complete lattice](complete_lattice.lean)
* [group](group.lean)

View file

@ -107,6 +107,25 @@ open nat eq.ops
proposition Icc_zero (n : ) : '[0, n] = '(-∞, n] :=
have '[0, n] = '[0, ∞) ∩ '(-∞, n], from rfl,
by+ rewrite [this, Icu_zero, univ_inter]
proposition bij_on_add_Icc_zero (m n : ) : bij_on (add m) ('[0, n]) ('[m, m+n]) :=
have mapsto : ∀₀ i ∈ '[0, n], m + i ∈ '[m, m+n], from
(take i, assume imem,
have H1 : m ≤ m + i, from !le_add_right,
have H2 : m + i ≤ m + n, from add_le_add_left (and.right imem) m,
show m + i ∈ '[m, m+n], from and.intro H1 H2),
have injon : inj_on (add m) ('[0, n]), from
(take i j, assume Hi Hj H, !eq_of_add_eq_add_left H),
have surjon : surj_on (add m) ('[0, n]) ('[m, m+n]), from
(take j, assume Hj : j ∈ '[m, m+n],
obtain lej jle, from Hj,
let i := j - m in
have ile : i ≤ n, from calc
j - m ≤ m + n - m : nat.sub_le_sub_right jle m
... = n : nat.add_sub_cancel_left,
have iadd : m + i = j, by rewrite add.comm; apply nat.sub_add_cancel lej,
exists.intro i (and.intro (and.intro !zero_le ile) iadd)),
bij_on.mk mapsto injon surjon
end nat
section nat -- put the instances in the intervals namespace

View file

@ -0,0 +1,199 @@
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Finite sums and products over intervals of natural numbers.
-/
import data.nat.order algebra.group_bigops algebra.interval
namespace nat
/- sums -/
section add_monoid
variables {A : Type} [add_monoid A]
definition sum_up_to (n : ) (f : → A) : A :=
nat.rec_on n 0 (λ n a, a + f n)
notation `∑` binders ` < ` n `, ` r:(scoped f, sum_up_to n f) := r
proposition sum_up_to_zero (f : → A) : (∑ i < 0, f i) = 0 := rfl
proposition sum_up_to_succ (n : ) (f : → A) : (∑ i < succ n, f i) = (∑ i < n, f i) + f n := rfl
proposition sum_up_to_one (f : → A) : (∑ i < 1, f i) = f 0 := zero_add (f 0)
definition sum_range (m n : ) (f : → A) : A := sum_up_to (succ n - m) (λ i, f (i + m))
notation `∑` binders `=` m `...` n `, ` r:(scoped f, sum_range m n f) := r
proposition sum_range_def (m n : ) (f : → A) :
(∑ i = m...n, f i) = (∑ i < (succ n - m), f (i + m)) := rfl
proposition sum_range_self (m : ) (f : → A) :
(∑ i = m...m, f i) = f m :=
by rewrite [↑sum_range, succ_sub !le.refl, nat.sub_self, sum_up_to_one, zero_add]
proposition sum_range_succ {m n : } (f : → A) (H : m ≤ succ n) :
(∑ i = m...succ n, f i) = (∑ i = m...n, f i) + f (succ n) :=
by rewrite [↑sum_range, succ_sub H, sum_up_to_succ, nat.sub_add_cancel H]
proposition sum_up_to_succ_eq_sum_range_zero (n : ) (f : → A) :
(∑ i < succ n, f i) = (∑ i = 0...n, f i) := rfl
end add_monoid
section finset
variables {A : Type} [add_comm_monoid A]
open finset
proposition sum_up_to_eq_Sum_upto (n : ) (f : → A) :
(∑ i < n, f i) = (∑ i ∈ upto n, f i) :=
begin
induction n with n ih,
{exact rfl},
have H : upto n ∩ '{n} = ∅, from
inter_eq_empty
(take x,
suppose x ∈ upto n,
have x < n, from lt_of_mem_upto this,
suppose x ∈ '{n},
have x = n, using this, by rewrite -mem_singleton_iff; apply this,
have n < n, from eq.subst this `x < n`,
show false, from !lt.irrefl this),
rewrite [sum_up_to_succ, ih, upto_succ, Sum_union _ H, Sum_singleton]
end
end finset
section set
variables {A : Type} [add_comm_monoid A]
open set intervals
proposition sum_range_eq_sum_interval_aux (m n : ) (f : → A) :
(∑ i = m...m+n, f i) = (∑ i ∈ '[m, m + n], f i) :=
begin
induction n with n ih,
{rewrite [nat.add_zero, sum_range_self, Icc_self, Sum_singleton]},
have H : m ≤ succ (m + n), from le_of_lt (lt_of_le_of_lt !le_add_right !lt_succ_self),
have H' : '[m, m + n] ∩ '{succ (m + n)} = ∅, from
eq_empty_of_forall_not_mem (take x, assume H1,
have x = succ (m + n), from eq_of_mem_singleton (and.right H1),
have succ (m + n) ≤ m + n, from eq.subst this (and.right (and.left H1)),
show false, from not_lt_of_ge this !lt_succ_self),
rewrite [add_succ, sum_range_succ f H, Icc_eq_Icc_union_Ioc !le_add_right !le_succ,
nat.Ioc_eq_Icc_succ, Icc_self, Sum_union f H', Sum_singleton, ih]
end
proposition sum_range_eq_sum_interval {m n : } (f : → A) (H : m ≤ n) :
(∑ i = m...n, f i) = (∑ i ∈ '[m, n], f i) :=
have n = m + (n - m), by rewrite [add.comm, nat.sub_add_cancel H],
using this, by rewrite this; apply sum_range_eq_sum_interval_aux
proposition sum_range_offset (m n : ) (f : → A) :
(∑ i = m...m+n, f i) = (∑ i = 0...n, f (m + i)) :=
have bij_on (add m) ('[0, n]) ('[m, m+n]), from !nat.bij_on_add_Icc_zero,
by+ rewrite [-zero_add n at {2}, *sum_range_eq_sum_interval_aux, Sum_eq_of_bij_on f this, zero_add]
end set
/- products -/
section monoid
variables {A : Type} [monoid A]
definition prod_up_to (n : ) (f : → A) : A :=
nat.rec_on n 1 (λ n a, a * f n)
notation `∏` binders ` < ` n `, ` r:(scoped f, prod_up_to n f) := r
proposition prod_up_to_zero (f : → A) : (∏ i < 0, f i) = 1 := rfl
proposition prod_up_to_succ (n : ) (f : → A) : (∏ i < succ n, f i) = (∏ i < n, f i) * f n := rfl
proposition prod_up_to_one (f : → A) : (∏ i < 1, f i) = f 0 := one_mul (f 0)
definition prod_range (m n : ) (f : → A) : A := prod_up_to (succ n - m) (λ i, f (i + m))
notation `∏` binders `=` m `...` n `, ` r:(scoped f, prod_range m n f) := r
proposition prod_range_def (m n : ) (f : → A) :
(∏ i = m...n, f i) = (∏ i < (succ n - m), f (i + m)) := rfl
proposition prod_range_self (m : ) (f : → A) :
(∏ i = m...m, f i) = f m :=
by rewrite [↑prod_range, succ_sub !le.refl, nat.sub_self, prod_up_to_one, zero_add]
proposition prod_range_succ {m n : } (f : → A) (H : m ≤ succ n) :
(∏ i = m...succ n, f i) = (∏ i = m...n, f i) * f (succ n) :=
by rewrite [↑prod_range, succ_sub H, prod_up_to_succ, nat.sub_add_cancel H]
proposition prod_up_to_succ_eq_prod_range_zero (n : ) (f : → A) :
(∏ i < succ n, f i) = (∏ i = 0...n, f i) := rfl
end monoid
section finset
variables {A : Type} [comm_monoid A]
open finset
proposition prod_up_to_eq_Prod_upto (n : ) (f : → A) :
(∏ i < n, f i) = (∏ i ∈ upto n, f i) :=
begin
induction n with n ih,
{exact rfl},
have H : upto n ∩ '{n} = ∅, from
inter_eq_empty
(take x,
suppose x ∈ upto n,
have x < n, from lt_of_mem_upto this,
suppose x ∈ '{n},
have x = n, using this, by rewrite -mem_singleton_iff; apply this,
have n < n, from eq.subst this `x < n`,
show false, from !lt.irrefl this),
rewrite [prod_up_to_succ, ih, upto_succ, Prod_union _ H, Prod_singleton]
end
end finset
section set
variables {A : Type} [comm_monoid A]
open set intervals
proposition prod_range_eq_prod_interval_aux (m n : ) (f : → A) :
(∏ i = m...m+n, f i) = (∏ i ∈ '[m, m + n], f i) :=
begin
induction n with n ih,
{rewrite [nat.add_zero, prod_range_self, Icc_self, Prod_singleton]},
have H : m ≤ succ (m + n), from le_of_lt (lt_of_le_of_lt !le_add_right !lt_succ_self),
have H' : '[m, m + n] ∩ '{succ (m + n)} = ∅, from
eq_empty_of_forall_not_mem (take x, assume H1,
have x = succ (m + n), from eq_of_mem_singleton (and.right H1),
have succ (m + n) ≤ m + n, from eq.subst this (and.right (and.left H1)),
show false, from not_lt_of_ge this !lt_succ_self),
rewrite [add_succ, prod_range_succ f H, Icc_eq_Icc_union_Ioc !le_add_right !le_succ,
nat.Ioc_eq_Icc_succ, Icc_self, Prod_union f H', Prod_singleton, ih]
end
proposition prod_range_eq_prod_interval {m n : } (f : → A) (H : m ≤ n) :
(∏ i = m...n, f i) = (∏ i ∈ '[m, n], f i) :=
have n = m + (n - m), by rewrite [add.comm, nat.sub_add_cancel H],
using this, by rewrite this; apply prod_range_eq_prod_interval_aux
proposition prod_range_offset (m n : ) (f : → A) :
(∏ i = m...m+n, f i) = (∏ i = 0...n, f (m + i)) :=
have bij_on (add m) ('[0, n]) ('[m, m+n]), from !nat.bij_on_add_Icc_zero,
by+ rewrite [-zero_add n at {2}, *prod_range_eq_prod_interval_aux, Prod_eq_of_bij_on f this,
zero_add]
end set
end nat