feat(library/data/nat/div.lean): remove dependence on funext

This commit is contained in:
Jeremy Avigad 2014-08-28 16:14:29 -04:00 committed by Leonardo de Moura
parent 1864fc2f6c
commit 8094884c85

View file

@ -2,16 +2,13 @@
--- Released under Apache 2.0 license as described in the file LICENSE. --- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Jeremy Avigad --- Author: Jeremy Avigad
-- Theory nat2 -- div.lean
-- =========== -- ========
-- --
-- This is a continuation of the development of the natural numbers, with a general way of -- This is a continuation of the development of the natural numbers, with a general way of
-- defining recursive functions, and definitions of div, mod, and gcd. -- defining recursive functions, and definitions of div, mod, and gcd.
-- TODO: replace the two uses of "not_or" by a constructive version
import logic .sub struc.relation data.prod import logic .sub struc.relation data.prod
import logic.axioms.funext -- is this really needed?
import tools.fake_simplifier import tools.fake_simplifier
using nat relation relation.iff_ops prod using nat relation relation.iff_ops prod
@ -63,76 +60,86 @@ definition rec_measure {dom codom : Type} (default : codom) (measure : dom →
(rec_val : dom → (dom → codom) → codom) (x : dom) : codom := (rec_val : dom → (dom → codom) → codom) (x : dom) : codom :=
rec_measure_aux default measure rec_val (succ (measure x)) x rec_measure_aux default measure rec_val (succ (measure x)) x
-- TODO: is funext really needed here?
theorem rec_measure_aux_spec {dom codom : Type} (default : codom) (measure : dom → ) theorem rec_measure_aux_spec {dom codom : Type} (default : codom) (measure : dom → )
(rec_val : dom → (dom → codom) → codom) (rec_val : dom → (dom → codom) → codom)
(rec_decreasing : ∀g m x, m ≥ measure x (rec_decreasing : ∀g1 g2 x, (∀z, measure z < measure x → g1 z = g2 z)
rec_val x g = rec_val x (restrict default measure g m)) rec_val x g1 = rec_val x g2)
(m : ) : (m : ) :
let f' := rec_measure_aux default measure rec_val in let f' := rec_measure_aux default measure rec_val in
let f := rec_measure default measure rec_val in let f := rec_measure default measure rec_val in
f' m = restrict default measure f m := ∀x, f' m x = restrict default measure f m x :=
-- TODO: note the use of (need for) inline here
let f' := rec_measure_aux default measure rec_val in let f' := rec_measure_aux default measure rec_val in
let f := rec_measure default measure rec_val in let f := rec_measure default measure rec_val in
case_strong_induction_on m case_strong_induction_on m
(have H1 : f' 0 = (λx, default), from rfl,
have H2 : restrict default measure f 0 = (λx, default), from
funext
(take x, (take x,
have H3 [fact]: ¬ measure x < 0, from not_lt_zero, have H1 : f' 0 x = default, from rfl,
show restrict default measure f 0 x = default, from if_neg H3), have H2 [fact]: ¬ measure x < 0, from not_lt_zero _,
show f' 0 = restrict default measure f 0, from trans H1 (symm H2)) have H3 : restrict default measure f 0 x = default, from if_neg H2 _ _,
show f' 0 x = restrict default measure f 0 x, from trans H1 (symm H3))
(take m, (take m,
assume IH: ∀n, n ≤ m → f' n = restrict default measure f n, assume IH: ∀n, n ≤ m → ∀x, f' n x = restrict default measure f n x,
funext take x : dom,
(take x : dom,
show f' (succ m) x = restrict default measure f (succ m) x, from show f' (succ m) x = restrict default measure f (succ m) x, from
by_cases -- (measure x < succ m) by_cases -- (measure x < succ m)
(assume H1 : measure x < succ m, (assume H1 : measure x < succ m,
have H2a : ∀z, measure z < measure x → f' m z = f z, from
take z,
assume Hzx : measure z < measure x,
calc
f' m z = restrict default measure f m z : IH m (le_refl m) z
... = f z : restrict_lt_eq _ _ _ _ _ (lt_le_trans Hzx (lt_succ_imp_le H1)),
have H2 [fact] : f' (succ m) x = rec_val x f, from have H2 [fact] : f' (succ m) x = rec_val x f, from
calc calc
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
... = rec_val x (f' m) : if_pos H1 ... = rec_val x (f' m) : if_pos H1 _ _
... = rec_val x (restrict default measure f m) : {IH m le_refl} ... = rec_val x f : rec_decreasing (f' m) f x H2a,
... = rec_val x f : symm (rec_decreasing _ _ _ (lt_succ_imp_le H1)),
have H3 : restrict default measure f (succ m) x = rec_val x f, from
let m' := measure x in let m' := measure x in
have H3a : ∀z, measure z < m' → f' m' z = f z, from
take z,
assume Hzx : measure z < measure x,
calc calc
restrict default measure f (succ m) x = f x : if_pos H1 f' m' z = restrict default measure f m' z : IH _ (lt_succ_imp_le H1) _
... = f z : restrict_lt_eq _ _ _ _ _ Hzx,
have H3 : restrict default measure f (succ m) x = rec_val x f, from
calc
restrict default measure f (succ m) x = f x : if_pos H1 _ _
... = f' (succ m') x : refl _ ... = f' (succ m') x : refl _
... = if measure x < succ m' then rec_val x (f' m') else default : rfl ... = if measure x < succ m' then rec_val x (f' m') else default : rfl
... = rec_val x (f' m') : if_pos self_lt_succ ... = rec_val x (f' m') : if_pos (self_lt_succ _) _ _
... = rec_val x (restrict default measure f m') : {IH m' (lt_succ_imp_le H1)} ... = rec_val x f : rec_decreasing _ _ _ H3a,
... = rec_val x f : (rec_decreasing _ _ _ le_refl)⁻¹,
show f' (succ m) x = restrict default measure f (succ m) x, show f' (succ m) x = restrict default measure f (succ m) x,
from trans H2 (symm H3)) from trans H2 (symm H3))
(assume H1 : ¬ measure x < succ m, (assume H1 : ¬ measure x < succ m,
have H2 : f' (succ m) x = default, from have H2 : f' (succ m) x = default, from
calc calc
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
... = default : if_neg H1, ... = default : if_neg H1 _ _,
have H3 : restrict default measure f (succ m) x = default, have H3 : restrict default measure f (succ m) x = default,
from if_neg H1, from if_neg H1 _ _,
show f' (succ m) x = restrict default measure f (succ m) x, show f' (succ m) x = restrict default measure f (succ m) x,
from trans H2 (symm H3)))) from trans H2 (symm H3)))
theorem rec_measure_spec {dom codom : Type} {default : codom} {measure : dom → } theorem rec_measure_spec {dom codom : Type} {default : codom} {measure : dom → }
(rec_val : dom → (dom → codom) → codom) (rec_val : dom → (dom → codom) → codom)
(rec_decreasing : ∀g m x, m ≥ measure x (rec_decreasing : ∀g1 g2 x, (∀z, measure z < measure x → g1 z = g2 z)
rec_val x g = rec_val x (restrict default measure g m)) rec_val x g1 = rec_val x g2)
(x : dom): (x : dom):
let f := rec_measure default measure rec_val in let f := rec_measure default measure rec_val in
f x = rec_val x f := f x = rec_val x f :=
let f' := rec_measure_aux default measure rec_val in let f' := rec_measure_aux default measure rec_val in
let f := rec_measure default measure rec_val in let f := rec_measure default measure rec_val in
let m := measure x in let m := measure x in
have H : ∀z, measure z < measure x → f' m z = f z, from
take z,
assume H1 : measure z < measure x,
calc
f' m z = restrict default measure f m z : rec_measure_aux_spec _ _ _ rec_decreasing m z
... = f z : restrict_lt_eq _ _ _ _ _ H1,
calc calc
f x = f' (succ m) x : rfl f x = f' (succ m) x : rfl
... = if measure x < succ m then rec_val x (f' m) else default : rfl ... = if measure x < succ m then rec_val x (f' m) else default : rfl
... = rec_val x (f' m) : if_pos self_lt_succ ... = rec_val x (f' m) : if_pos (self_lt_succ)
... = rec_val x (restrict default measure f m) : {rec_measure_aux_spec _ _ _ rec_decreasing _} ... = rec_val x f : rec_decreasing _ _ _ H
... = rec_val x f : (rec_decreasing _ _ _ le_refl)⁻¹
-- Div and mod -- Div and mod
@ -146,10 +153,10 @@ if (y = 0 x < y) then 0 else succ (div_aux' (x - y))
definition div_aux (y : ) : := rec_measure 0 (fun x, x) (div_aux_rec y) definition div_aux (y : ) : := rec_measure 0 (fun x, x) (div_aux_rec y)
theorem div_aux_decreasing (y : ) (g : ) (m : ) (x : ) (H : m ≥ x) : theorem div_aux_decreasing (y : ) (g1 g2 : ) (x : ) (H : ∀z, z < x → g1 z = g2 z) :
div_aux_rec y x g = div_aux_rec y x (restrict 0 (fun x, x) g m) := div_aux_rec y x g1 = div_aux_rec y x g2 :=
let lhs := div_aux_rec y x g in let lhs := div_aux_rec y x g1 in
let rhs := div_aux_rec y x (restrict 0 (fun x, x) g m) in let rhs := div_aux_rec y x g2 in
show lhs = rhs, from show lhs = rhs, from
by_cases -- (y = 0 x < y) by_cases -- (y = 0 x < y)
(assume H1 : y = 0 x < y, (assume H1 : y = 0 x < y,
@ -157,15 +164,15 @@ show lhs = rhs, from
lhs = 0 : if_pos H1 lhs = 0 : if_pos H1
... = rhs : (if_pos H1)⁻¹) ... = rhs : (if_pos H1)⁻¹)
(assume H1 : ¬ (y = 0 x < y), (assume H1 : ¬ (y = 0 x < y),
have H2 : y ≠ 0 ∧ ¬ x < y, from sorry, -- subst (not_or _ _) H1, have H2a : y ≠ 0, from assume H, H1 (or_intro_left _ H),
have ypos : y > 0, from ne_zero_imp_pos (and_elim_left H2), have H2b : ¬ x < y, from assume H, H1 (or_intro_right _ H),
have xgey : x ≥ y, from not_lt_imp_ge (and_elim_right H2), have ypos : y > 0, from ne_zero_imp_pos H2a,
have xgey : x ≥ y, from not_lt_imp_ge H2b,
have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos, have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos,
have H5 : x - y < m, from lt_le_trans H4 H, calc
symm (calc lhs = succ (g1 (x - y)) : if_neg H1
rhs = succ (restrict 0 (fun x, x) g m (x - y)) : if_neg H1 ... = succ (g2 (x - y)) : {H _ H4}
... = succ (g (x - y)) : {restrict_lt_eq _ _ _ _ _ H5} ... = rhs : symm (if_neg H1))
... = lhs : (if_neg H1)⁻¹))
theorem div_aux_spec (y : ) (x : ) : theorem div_aux_spec (y : ) (x : ) :
div_aux y x = if (y = 0 x < y) then 0 else succ (div_aux y (x - y)) := div_aux y x = if (y = 0 x < y) then 0 else succ (div_aux y (x - y)) :=
@ -173,7 +180,7 @@ rec_measure_spec (div_aux_rec y) (div_aux_decreasing y) x
definition idivide (x : ) (y : ) : := div_aux y x definition idivide (x : ) (y : ) : := div_aux y x
infixl `div` := idivide -- copied from Isabelle infixl `div` := idivide
theorem div_zero {x : } : x div 0 = 0 := theorem div_zero {x : } : x div 0 = 0 :=
trans (div_aux_spec _ _) (if_pos (or_inl rfl)) trans (div_aux_spec _ _) (if_pos (or_inl rfl))
@ -222,10 +229,10 @@ if (y = 0 x < y) then x else mod_aux' (x - y)
definition mod_aux (y : ) : := rec_measure 0 (fun x, x) (mod_aux_rec y) definition mod_aux (y : ) : := rec_measure 0 (fun x, x) (mod_aux_rec y)
theorem mod_aux_decreasing (y : ) (g : ) (m : ) (x : ) (H : m ≥ x) : theorem mod_aux_decreasing (y : ) (g1 g2 : ) (x : ) (H : ∀z, z < x → g1 z = g2 z) :
mod_aux_rec y x g = mod_aux_rec y x (restrict 0 (fun x, x) g m) := mod_aux_rec y x g1 = mod_aux_rec y x g2 :=
let lhs := mod_aux_rec y x g in let lhs := mod_aux_rec y x g1 in
let rhs := mod_aux_rec y x (restrict 0 (fun x, x) g m) in let rhs := mod_aux_rec y x g2 in
show lhs = rhs, from show lhs = rhs, from
by_cases -- (y = 0 x < y) by_cases -- (y = 0 x < y)
(assume H1 : y = 0 x < y, (assume H1 : y = 0 x < y,
@ -233,15 +240,15 @@ show lhs = rhs, from
lhs = x : if_pos H1 lhs = x : if_pos H1
... = rhs : (if_pos H1)⁻¹) ... = rhs : (if_pos H1)⁻¹)
(assume H1 : ¬ (y = 0 x < y), (assume H1 : ¬ (y = 0 x < y),
have H2 : y ≠ 0 ∧ ¬ x < y, from sorry, -- subst (not_or _ _) H1, have H2a : y ≠ 0, from assume H, H1 (or_intro_left _ H),
have ypos : y > 0, from ne_zero_imp_pos (and_elim_left H2), have H2b : ¬ x < y, from assume H, H1 (or_intro_right _ H),
have xgey : x ≥ y, from not_lt_imp_ge (and_elim_right H2), have ypos : y > 0, from ne_zero_imp_pos H2a,
have xgey : x ≥ y, from not_lt_imp_ge H2b,
have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos, have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos,
have H5 : x - y < m, from lt_le_trans H4 H, calc
symm (calc lhs = g1 (x - y) : if_neg H1
rhs = restrict 0 (fun x, x) g m (x - y) : if_neg H1 ... = g2 (x - y) : H _ H4
... = g (x - y) : restrict_lt_eq _ _ _ _ _ H5 ... = rhs : symm (if_neg H1))
... = lhs : (if_neg H1)⁻¹))
theorem mod_aux_spec (y : ) (x : ) : theorem mod_aux_spec (y : ) (x : ) :
mod_aux y x = if (y = 0 x < y) then x else mod_aux y (x - y) := mod_aux y x = if (y = 0 x < y) then x else mod_aux y (x - y) :=
@ -588,12 +595,13 @@ if y = 0 then x else gcd_aux' (pair y (x mod y))
definition gcd_aux : × := rec_measure 0 gcd_aux_measure gcd_aux_rec definition gcd_aux : × := rec_measure 0 gcd_aux_measure gcd_aux_rec
theorem gcd_aux_decreasing (g : × ) (m : ) (p : × ) (H : m ≥ gcd_aux_measure p) : theorem gcd_aux_decreasing (g1 g2 : × ) (p : × )
gcd_aux_rec p g = gcd_aux_rec p (restrict 0 gcd_aux_measure g m) := (H : ∀p', gcd_aux_measure p' < gcd_aux_measure p → g1 p' = g2 p') :
gcd_aux_rec p g1 = gcd_aux_rec p g2 :=
let x := pr1 p, y := pr2 p in let x := pr1 p, y := pr2 p in
let p' := pair y (x mod y) in let p' := pair y (x mod y) in
let lhs := gcd_aux_rec p g in let lhs := gcd_aux_rec p g1 in
let rhs := gcd_aux_rec p (restrict 0 gcd_aux_measure g m) in let rhs := gcd_aux_rec p g2 in
show lhs = rhs, from show lhs = rhs, from
by_cases -- (y = 0) by_cases -- (y = 0)
(assume H1 : y = 0, (assume H1 : y = 0,
@ -603,12 +611,11 @@ show lhs = rhs, from
(assume H1 : y ≠ 0, (assume H1 : y ≠ 0,
have ypos : y > 0, from ne_zero_imp_pos H1, have ypos : y > 0, from ne_zero_imp_pos H1,
have H2 : gcd_aux_measure p' = x mod y, from pr2_pair _ _, have H2 : gcd_aux_measure p' = x mod y, from pr2_pair _ _,
have H3 : gcd_aux_measure p' < gcd_aux_measure p, from H2⁻¹ ▸ (mod_lt ypos), have H3 : gcd_aux_measure p' < gcd_aux_measure p, from subst (symm H2) (mod_lt ypos),
have H4: gcd_aux_measure p' < m, from lt_le_trans H3 H, calc
symm (calc lhs = g1 p' : if_neg H1
rhs = restrict 0 gcd_aux_measure g m p' : if_neg H1 ... = g2 p' : H _ H3
... = g p' : restrict_lt_eq _ _ _ _ _ H4 ... = rhs : symm (if_neg H1))
... = lhs : (if_neg H1)⁻¹))
theorem gcd_aux_spec (p : × ) : gcd_aux p = theorem gcd_aux_spec (p : × ) : gcd_aux p =
let x := pr1 p, y := pr2 p in let x := pr1 p, y := pr2 p in