feat(library/data/nat/div.lean): remove dependence on funext
This commit is contained in:
parent
1864fc2f6c
commit
8094884c85
1 changed files with 96 additions and 89 deletions
|
@ -2,16 +2,13 @@
|
|||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Jeremy Avigad
|
||||
|
||||
-- Theory nat2
|
||||
-- ===========
|
||||
-- div.lean
|
||||
-- ========
|
||||
--
|
||||
-- This is a continuation of the development of the natural numbers, with a general way of
|
||||
-- defining recursive functions, and definitions of div, mod, and gcd.
|
||||
|
||||
-- TODO: replace the two uses of "not_or" by a constructive version
|
||||
|
||||
import logic .sub struc.relation data.prod
|
||||
import logic.axioms.funext -- is this really needed?
|
||||
import tools.fake_simplifier
|
||||
|
||||
using nat relation relation.iff_ops prod
|
||||
|
@ -63,76 +60,86 @@ definition rec_measure {dom codom : Type} (default : codom) (measure : dom →
|
|||
(rec_val : dom → (dom → codom) → codom) (x : dom) : codom :=
|
||||
rec_measure_aux default measure rec_val (succ (measure x)) x
|
||||
|
||||
-- TODO: is funext really needed here?
|
||||
theorem rec_measure_aux_spec {dom codom : Type} (default : codom) (measure : dom → ℕ)
|
||||
(rec_val : dom → (dom → codom) → codom)
|
||||
(rec_decreasing : ∀g m x, m ≥ measure x →
|
||||
rec_val x g = rec_val x (restrict default measure g m))
|
||||
(rec_decreasing : ∀g1 g2 x, (∀z, measure z < measure x → g1 z = g2 z) →
|
||||
rec_val x g1 = rec_val x g2)
|
||||
(m : ℕ) :
|
||||
let f' := rec_measure_aux default measure rec_val in
|
||||
let f := rec_measure default measure rec_val in
|
||||
f' m = restrict default measure f m :=
|
||||
-- TODO: note the use of (need for) inline here
|
||||
∀x, f' m x = restrict default measure f m x :=
|
||||
let f' := rec_measure_aux default measure rec_val in
|
||||
let f := rec_measure default measure rec_val in
|
||||
case_strong_induction_on m
|
||||
(have H1 : f' 0 = (λx, default), from rfl,
|
||||
have H2 : restrict default measure f 0 = (λx, default), from
|
||||
funext
|
||||
(take x,
|
||||
have H3 [fact]: ¬ measure x < 0, from not_lt_zero,
|
||||
show restrict default measure f 0 x = default, from if_neg H3),
|
||||
show f' 0 = restrict default measure f 0, from trans H1 (symm H2))
|
||||
have H1 : f' 0 x = default, from rfl,
|
||||
have H2 [fact]: ¬ measure x < 0, from not_lt_zero _,
|
||||
have H3 : restrict default measure f 0 x = default, from if_neg H2 _ _,
|
||||
show f' 0 x = restrict default measure f 0 x, from trans H1 (symm H3))
|
||||
(take m,
|
||||
assume IH: ∀n, n ≤ m → f' n = restrict default measure f n,
|
||||
funext
|
||||
(take x : dom,
|
||||
assume IH: ∀n, n ≤ m → ∀x, f' n x = restrict default measure f n x,
|
||||
take x : dom,
|
||||
show f' (succ m) x = restrict default measure f (succ m) x, from
|
||||
by_cases -- (measure x < succ m)
|
||||
(assume H1 : measure x < succ m,
|
||||
have H2a : ∀z, measure z < measure x → f' m z = f z, from
|
||||
take z,
|
||||
assume Hzx : measure z < measure x,
|
||||
calc
|
||||
f' m z = restrict default measure f m z : IH m (le_refl m) z
|
||||
... = f z : restrict_lt_eq _ _ _ _ _ (lt_le_trans Hzx (lt_succ_imp_le H1)),
|
||||
have H2 [fact] : f' (succ m) x = rec_val x f, from
|
||||
calc
|
||||
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
|
||||
... = rec_val x (f' m) : if_pos H1
|
||||
... = rec_val x (restrict default measure f m) : {IH m le_refl}
|
||||
... = rec_val x f : symm (rec_decreasing _ _ _ (lt_succ_imp_le H1)),
|
||||
have H3 : restrict default measure f (succ m) x = rec_val x f, from
|
||||
... = rec_val x (f' m) : if_pos H1 _ _
|
||||
... = rec_val x f : rec_decreasing (f' m) f x H2a,
|
||||
let m' := measure x in
|
||||
have H3a : ∀z, measure z < m' → f' m' z = f z, from
|
||||
take z,
|
||||
assume Hzx : measure z < measure x,
|
||||
calc
|
||||
restrict default measure f (succ m) x = f x : if_pos H1
|
||||
f' m' z = restrict default measure f m' z : IH _ (lt_succ_imp_le H1) _
|
||||
... = f z : restrict_lt_eq _ _ _ _ _ Hzx,
|
||||
have H3 : restrict default measure f (succ m) x = rec_val x f, from
|
||||
calc
|
||||
restrict default measure f (succ m) x = f x : if_pos H1 _ _
|
||||
... = f' (succ m') x : refl _
|
||||
... = if measure x < succ m' then rec_val x (f' m') else default : rfl
|
||||
... = rec_val x (f' m') : if_pos self_lt_succ
|
||||
... = rec_val x (restrict default measure f m') : {IH m' (lt_succ_imp_le H1)}
|
||||
... = rec_val x f : (rec_decreasing _ _ _ le_refl)⁻¹,
|
||||
... = rec_val x (f' m') : if_pos (self_lt_succ _) _ _
|
||||
... = rec_val x f : rec_decreasing _ _ _ H3a,
|
||||
show f' (succ m) x = restrict default measure f (succ m) x,
|
||||
from trans H2 (symm H3))
|
||||
(assume H1 : ¬ measure x < succ m,
|
||||
have H2 : f' (succ m) x = default, from
|
||||
calc
|
||||
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
|
||||
... = default : if_neg H1,
|
||||
... = default : if_neg H1 _ _,
|
||||
have H3 : restrict default measure f (succ m) x = default,
|
||||
from if_neg H1,
|
||||
from if_neg H1 _ _,
|
||||
show f' (succ m) x = restrict default measure f (succ m) x,
|
||||
from trans H2 (symm H3))))
|
||||
from trans H2 (symm H3)))
|
||||
|
||||
theorem rec_measure_spec {dom codom : Type} {default : codom} {measure : dom → ℕ}
|
||||
(rec_val : dom → (dom → codom) → codom)
|
||||
(rec_decreasing : ∀g m x, m ≥ measure x →
|
||||
rec_val x g = rec_val x (restrict default measure g m))
|
||||
(rec_decreasing : ∀g1 g2 x, (∀z, measure z < measure x → g1 z = g2 z) →
|
||||
rec_val x g1 = rec_val x g2)
|
||||
(x : dom):
|
||||
let f := rec_measure default measure rec_val in
|
||||
f x = rec_val x f :=
|
||||
let f' := rec_measure_aux default measure rec_val in
|
||||
let f := rec_measure default measure rec_val in
|
||||
let m := measure x in
|
||||
have H : ∀z, measure z < measure x → f' m z = f z, from
|
||||
take z,
|
||||
assume H1 : measure z < measure x,
|
||||
calc
|
||||
f' m z = restrict default measure f m z : rec_measure_aux_spec _ _ _ rec_decreasing m z
|
||||
... = f z : restrict_lt_eq _ _ _ _ _ H1,
|
||||
calc
|
||||
f x = f' (succ m) x : rfl
|
||||
... = if measure x < succ m then rec_val x (f' m) else default : rfl
|
||||
... = rec_val x (f' m) : if_pos self_lt_succ
|
||||
... = rec_val x (restrict default measure f m) : {rec_measure_aux_spec _ _ _ rec_decreasing _}
|
||||
... = rec_val x f : (rec_decreasing _ _ _ le_refl)⁻¹
|
||||
... = rec_val x (f' m) : if_pos (self_lt_succ)
|
||||
... = rec_val x f : rec_decreasing _ _ _ H
|
||||
|
||||
|
||||
-- Div and mod
|
||||
|
@ -146,10 +153,10 @@ if (y = 0 ∨ x < y) then 0 else succ (div_aux' (x - y))
|
|||
|
||||
definition div_aux (y : ℕ) : ℕ → ℕ := rec_measure 0 (fun x, x) (div_aux_rec y)
|
||||
|
||||
theorem div_aux_decreasing (y : ℕ) (g : ℕ → ℕ) (m : ℕ) (x : ℕ) (H : m ≥ x) :
|
||||
div_aux_rec y x g = div_aux_rec y x (restrict 0 (fun x, x) g m) :=
|
||||
let lhs := div_aux_rec y x g in
|
||||
let rhs := div_aux_rec y x (restrict 0 (fun x, x) g m) in
|
||||
theorem div_aux_decreasing (y : ℕ) (g1 g2 : ℕ → ℕ) (x : ℕ) (H : ∀z, z < x → g1 z = g2 z) :
|
||||
div_aux_rec y x g1 = div_aux_rec y x g2 :=
|
||||
let lhs := div_aux_rec y x g1 in
|
||||
let rhs := div_aux_rec y x g2 in
|
||||
show lhs = rhs, from
|
||||
by_cases -- (y = 0 ∨ x < y)
|
||||
(assume H1 : y = 0 ∨ x < y,
|
||||
|
@ -157,15 +164,15 @@ show lhs = rhs, from
|
|||
lhs = 0 : if_pos H1
|
||||
... = rhs : (if_pos H1)⁻¹)
|
||||
(assume H1 : ¬ (y = 0 ∨ x < y),
|
||||
have H2 : y ≠ 0 ∧ ¬ x < y, from sorry, -- subst (not_or _ _) H1,
|
||||
have ypos : y > 0, from ne_zero_imp_pos (and_elim_left H2),
|
||||
have xgey : x ≥ y, from not_lt_imp_ge (and_elim_right H2),
|
||||
have H2a : y ≠ 0, from assume H, H1 (or_intro_left _ H),
|
||||
have H2b : ¬ x < y, from assume H, H1 (or_intro_right _ H),
|
||||
have ypos : y > 0, from ne_zero_imp_pos H2a,
|
||||
have xgey : x ≥ y, from not_lt_imp_ge H2b,
|
||||
have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos,
|
||||
have H5 : x - y < m, from lt_le_trans H4 H,
|
||||
symm (calc
|
||||
rhs = succ (restrict 0 (fun x, x) g m (x - y)) : if_neg H1
|
||||
... = succ (g (x - y)) : {restrict_lt_eq _ _ _ _ _ H5}
|
||||
... = lhs : (if_neg H1)⁻¹))
|
||||
calc
|
||||
lhs = succ (g1 (x - y)) : if_neg H1
|
||||
... = succ (g2 (x - y)) : {H _ H4}
|
||||
... = rhs : symm (if_neg H1))
|
||||
|
||||
theorem div_aux_spec (y : ℕ) (x : ℕ) :
|
||||
div_aux y x = if (y = 0 ∨ x < y) then 0 else succ (div_aux y (x - y)) :=
|
||||
|
@ -173,7 +180,7 @@ rec_measure_spec (div_aux_rec y) (div_aux_decreasing y) x
|
|||
|
||||
definition idivide (x : ℕ) (y : ℕ) : ℕ := div_aux y x
|
||||
|
||||
infixl `div` := idivide -- copied from Isabelle
|
||||
infixl `div` := idivide
|
||||
|
||||
theorem div_zero {x : ℕ} : x div 0 = 0 :=
|
||||
trans (div_aux_spec _ _) (if_pos (or_inl rfl))
|
||||
|
@ -222,10 +229,10 @@ if (y = 0 ∨ x < y) then x else mod_aux' (x - y)
|
|||
|
||||
definition mod_aux (y : ℕ) : ℕ → ℕ := rec_measure 0 (fun x, x) (mod_aux_rec y)
|
||||
|
||||
theorem mod_aux_decreasing (y : ℕ) (g : ℕ → ℕ) (m : ℕ) (x : ℕ) (H : m ≥ x) :
|
||||
mod_aux_rec y x g = mod_aux_rec y x (restrict 0 (fun x, x) g m) :=
|
||||
let lhs := mod_aux_rec y x g in
|
||||
let rhs := mod_aux_rec y x (restrict 0 (fun x, x) g m) in
|
||||
theorem mod_aux_decreasing (y : ℕ) (g1 g2 : ℕ → ℕ) (x : ℕ) (H : ∀z, z < x → g1 z = g2 z) :
|
||||
mod_aux_rec y x g1 = mod_aux_rec y x g2 :=
|
||||
let lhs := mod_aux_rec y x g1 in
|
||||
let rhs := mod_aux_rec y x g2 in
|
||||
show lhs = rhs, from
|
||||
by_cases -- (y = 0 ∨ x < y)
|
||||
(assume H1 : y = 0 ∨ x < y,
|
||||
|
@ -233,15 +240,15 @@ show lhs = rhs, from
|
|||
lhs = x : if_pos H1
|
||||
... = rhs : (if_pos H1)⁻¹)
|
||||
(assume H1 : ¬ (y = 0 ∨ x < y),
|
||||
have H2 : y ≠ 0 ∧ ¬ x < y, from sorry, -- subst (not_or _ _) H1,
|
||||
have ypos : y > 0, from ne_zero_imp_pos (and_elim_left H2),
|
||||
have xgey : x ≥ y, from not_lt_imp_ge (and_elim_right H2),
|
||||
have H2a : y ≠ 0, from assume H, H1 (or_intro_left _ H),
|
||||
have H2b : ¬ x < y, from assume H, H1 (or_intro_right _ H),
|
||||
have ypos : y > 0, from ne_zero_imp_pos H2a,
|
||||
have xgey : x ≥ y, from not_lt_imp_ge H2b,
|
||||
have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos,
|
||||
have H5 : x - y < m, from lt_le_trans H4 H,
|
||||
symm (calc
|
||||
rhs = restrict 0 (fun x, x) g m (x - y) : if_neg H1
|
||||
... = g (x - y) : restrict_lt_eq _ _ _ _ _ H5
|
||||
... = lhs : (if_neg H1)⁻¹))
|
||||
calc
|
||||
lhs = g1 (x - y) : if_neg H1
|
||||
... = g2 (x - y) : H _ H4
|
||||
... = rhs : symm (if_neg H1))
|
||||
|
||||
theorem mod_aux_spec (y : ℕ) (x : ℕ) :
|
||||
mod_aux y x = if (y = 0 ∨ x < y) then x else mod_aux y (x - y) :=
|
||||
|
@ -588,12 +595,13 @@ if y = 0 then x else gcd_aux' (pair y (x mod y))
|
|||
|
||||
definition gcd_aux : ℕ × ℕ → ℕ := rec_measure 0 gcd_aux_measure gcd_aux_rec
|
||||
|
||||
theorem gcd_aux_decreasing (g : ℕ × ℕ → ℕ) (m : ℕ) (p : ℕ × ℕ) (H : m ≥ gcd_aux_measure p) :
|
||||
gcd_aux_rec p g = gcd_aux_rec p (restrict 0 gcd_aux_measure g m) :=
|
||||
theorem gcd_aux_decreasing (g1 g2 : ℕ × ℕ → ℕ) (p : ℕ × ℕ)
|
||||
(H : ∀p', gcd_aux_measure p' < gcd_aux_measure p → g1 p' = g2 p') :
|
||||
gcd_aux_rec p g1 = gcd_aux_rec p g2 :=
|
||||
let x := pr1 p, y := pr2 p in
|
||||
let p' := pair y (x mod y) in
|
||||
let lhs := gcd_aux_rec p g in
|
||||
let rhs := gcd_aux_rec p (restrict 0 gcd_aux_measure g m) in
|
||||
let lhs := gcd_aux_rec p g1 in
|
||||
let rhs := gcd_aux_rec p g2 in
|
||||
show lhs = rhs, from
|
||||
by_cases -- (y = 0)
|
||||
(assume H1 : y = 0,
|
||||
|
@ -603,12 +611,11 @@ show lhs = rhs, from
|
|||
(assume H1 : y ≠ 0,
|
||||
have ypos : y > 0, from ne_zero_imp_pos H1,
|
||||
have H2 : gcd_aux_measure p' = x mod y, from pr2_pair _ _,
|
||||
have H3 : gcd_aux_measure p' < gcd_aux_measure p, from H2⁻¹ ▸ (mod_lt ypos),
|
||||
have H4: gcd_aux_measure p' < m, from lt_le_trans H3 H,
|
||||
symm (calc
|
||||
rhs = restrict 0 gcd_aux_measure g m p' : if_neg H1
|
||||
... = g p' : restrict_lt_eq _ _ _ _ _ H4
|
||||
... = lhs : (if_neg H1)⁻¹))
|
||||
have H3 : gcd_aux_measure p' < gcd_aux_measure p, from subst (symm H2) (mod_lt ypos),
|
||||
calc
|
||||
lhs = g1 p' : if_neg H1
|
||||
... = g2 p' : H _ H3
|
||||
... = rhs : symm (if_neg H1))
|
||||
|
||||
theorem gcd_aux_spec (p : ℕ × ℕ) : gcd_aux p =
|
||||
let x := pr1 p, y := pr2 p in
|
||||
|
|
Loading…
Reference in a new issue