feat(init/ua): add ua_symm and ua_trans
This commit is contained in:
parent
05b59aecf8
commit
80a2e285cb
1 changed files with 16 additions and 2 deletions
|
@ -61,8 +61,6 @@ definition eq_of_equiv_lift {A B : Type} (f : A ≃ B) : A = lift B :=
|
||||||
ua (f ⬝e !equiv_lift)
|
ua (f ⬝e !equiv_lift)
|
||||||
|
|
||||||
namespace equiv
|
namespace equiv
|
||||||
definition ua_refl (A : Type) : ua erfl = idpath A :=
|
|
||||||
eq_of_fn_eq_fn !eq_equiv_equiv (right_inv !eq_equiv_equiv erfl)
|
|
||||||
|
|
||||||
-- One consequence of UA is that we can transport along equivalencies of types
|
-- One consequence of UA is that we can transport along equivalencies of types
|
||||||
-- We can use this for calculation evironments
|
-- We can use this for calculation evironments
|
||||||
|
@ -90,4 +88,20 @@ namespace equiv
|
||||||
(f : A ≃ B) (H : P equiv.refl idp) : P f (ua f) :=
|
(f : A ≃ B) (H : P equiv.refl idp) : P f (ua f) :=
|
||||||
rec_on_ua' f (λq, eq.rec_on q H)
|
rec_on_ua' f (λq, eq.rec_on q H)
|
||||||
|
|
||||||
|
definition ua_refl (A : Type) : ua erfl = idpath A :=
|
||||||
|
eq_of_fn_eq_fn !eq_equiv_equiv (right_inv !eq_equiv_equiv erfl)
|
||||||
|
|
||||||
|
definition ua_symm {A B : Type} (f : A ≃ B) : ua f⁻¹ᵉ = (ua f)⁻¹ :=
|
||||||
|
begin
|
||||||
|
apply rec_on_ua_idp f,
|
||||||
|
refine !ua_refl ⬝ inverse2 !ua_refl⁻¹
|
||||||
|
end
|
||||||
|
|
||||||
|
definition ua_trans {A B C : Type} (f : A ≃ B) (g : B ≃ C) : ua (f ⬝e g) = ua f ⬝ ua g :=
|
||||||
|
begin
|
||||||
|
apply rec_on_ua_idp g, apply rec_on_ua_idp f,
|
||||||
|
refine !ua_refl ⬝ concat2 !ua_refl⁻¹ !ua_refl⁻¹
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
end equiv
|
end equiv
|
||||||
|
|
Loading…
Reference in a new issue