fix(tests/lean/run): adjust some tests to changes in the standard library

This commit is contained in:
Leonardo de Moura 2015-10-13 15:39:03 -07:00
parent 38c433dbec
commit 81618e30f3
79 changed files with 214 additions and 265 deletions

View file

@ -6,7 +6,7 @@ node : tree A → tree A → tree A
check tree.node
definition size {A : Type} (t : tree A) :=
definition size {A : Type} (t : tree A) : nat :=
tree.rec (λ a, 1) (λ t₁ t₂ n₁ n₂, n₁ + n₂) t
check size

View file

@ -9,7 +9,7 @@ open nat
check less.rec_on
namespace foo1
protected definition foo2.bar := 10
protected definition foo2.bar : nat := 10
end foo1
example : foo1.foo2.bar = 10 :=

View file

@ -1,5 +1,5 @@
import data.set
open set
open set nat
section
variable {A : Type}
@ -13,8 +13,8 @@ section
notation `⦃` s:(foldr `,` (a t, insert a t) ∅) `⦄` := s
notation `{` `{` s:(foldr `,` (a t, insert a t) ∅) `}` `}` := s
check ⦃1, 2, 3⦄
check {{1, 2, 3}}
check ⦃(1:nat), 2, 3⦄
check {{(1:nat), 2, 3}}
definition foo {X : Type} {{ x : X }} : X := x
end

View file

@ -5,7 +5,7 @@ example (a b : nat) (f : nat → nat) (h : f (succ a) = 0) : f (a+1) = 0 :=
by rewrite [add_one, h]
example (a b : nat) (f : nat → nat) (h : f (succ a) = 0) : f (a+1) = 0 :=
by xrewrite h
by krewrite h
definition g (a : nat) := a + 1
definition h (a : nat) := a

View file

@ -1,15 +1,15 @@
namespace f1
definition flip := 20
definition flip := (20:num)
end f1
namespace f2
definition flip := 10
definition flip := (10:num)
end f2
namespace f3
export [declarations] f1
export -[declarations] f2
export - [declarations] f2
end f3
export [declarations] f1
export -[declarations] f2
export - [declarations] f2

View file

@ -4,7 +4,7 @@ namespace Nat
constant Nat : Type₁
constant num2Nat : num → Nat
attribute num2Nat [coercion]
check (0 : Nat)
definition foo : Nat := (0:num)
end Nat
constant Int : Type₁
@ -13,8 +13,8 @@ namespace Int
open Nat
constant Nat2Int : Nat → Int
attribute Nat2Int [coercion]
check (0 : Int)
definition foo : Int := (0:num)
end Int
open Int
check (0 : Int)
definition foo : Int := (0:num)

View file

@ -1,3 +1,4 @@
import data.nat
open nat
example (n : ) : n + 1 = succ n :=
by rewrite [<d n+1]
by rewrite [-add_one]

View file

@ -1,5 +1,6 @@
definition foo.bar := 10
definition boo.bla.foo := 20
open nat
definition foo.bar : nat := 10
definition boo.bla.foo : nat := 20
open foo
open boo.bla

View file

@ -3,7 +3,7 @@ definition seq_diagram (A : → Type) : Type := (Πn, A n → A (succ n))
variables (A : → Type) (f : seq_diagram A)
include f
definition shift_diag [unfold-full] (k : ) : seq_diagram (λn, A (k + n)) :=
definition shift_diag [unfold_full] (k : ) : seq_diagram (λn, A (k + n)) :=
λn a, f (k + n) a
example (n k : ) (b : A (k + n)) : shift_diag A f k n b = sorry :=

View file

@ -3,7 +3,7 @@ open finset num nat int algebra
check @finset.insert _ _ 1 (@finset.empty )
check '{1, 2, 3} -- finset num
check '{(1:nat), 2, 3}
check ('{1, 2, 3} : finset )
check ('{1, 2, 3} : finset ) -- finset
check ('{1, 2, 3} : finset ) -- finset

View file

@ -10,14 +10,11 @@ section
mul_one 1
end
definition one [reducible] (A : Type) [s : has_one A] : A :=
!has_one.one
section
variable {A : Type}
variable [s : comm_group A]
include s
theorem one_mul_one2 : (one A) * 1 = 1 :=
theorem one_mul_one2 : (one : A) * 1 = 1 :=
by rewrite one_mul_one
end

View file

@ -1,14 +1,5 @@
import logic
structure has_mul [class] (A : Type) :=
(mul : A → A → A)
structure has_one [class] (A : Type) :=
(one : A)
structure has_inv [class] (A : Type) :=
(inv : A → A)
infixl `*` := has_mul.mul
postfix `⁻¹` := has_inv.inv
notation 1 := has_one.one

View file

@ -7,6 +7,5 @@ attribute nat.rec_on [unfold 2]
example (a b c : nat) : a + 0 = 0 + a ∧ b + 0 = 0 + b :=
begin
apply and.intro,
all_goals esimp[of_num],
all_goals (state; rewrite zero_add)
end

View file

@ -18,6 +18,6 @@ example (a b c : nat) : (a + 0 = 0 + a ∧ b + 0 = 0 + b) ∧ c = c :=
begin
apply and.intro,
apply and.intro ;; (esimp[of_num]; state; rewrite zero_add),
apply and.intro ;; (state; rewrite zero_add),
apply rfl
end

View file

@ -1,4 +1,4 @@
definition a := 10
definition a :num := 10
constant b : num
constant c : num

View file

@ -1,5 +1,5 @@
import data.nat
open nat eq.ops
open nat eq.ops algebra
theorem lcm_dvd {m n k : nat} (H1 : m k) (H2 : (n k)) : (lcm m n k) :=
match eq_zero_or_pos k with

View file

@ -1,6 +1,6 @@
import logic data.num
open num
constant f : num → num
notation `o`:1 := 10
notation `o`:1 := (10:num)
check o + 1
check f o + o + o

View file

@ -1,11 +1,11 @@
import data.nat.bquant
open nat
example : is_true (∀ x, x ≤ 4 → x ≠ 6) :=
example : is_true (∀ x : nat, x ≤ 4 → x ≠ 6) :=
trivial
example : is_false (∀ x, x ≤ 5 → ∀ y, y < x → y * y ≠ x) :=
example : is_false (∀ x : nat, x ≤ 5 → ∀ y, y < x → y * y ≠ x) :=
trivial
example : is_true (∀ x, x < 5 → ∃ y, y ≤ x + 5 ∧ y = 2*x) :=
example : is_true (∀ x : nat, x < 5 → ∃ y, y ≤ x + 5 ∧ y = 2*x) :=
trivial

View file

@ -1,7 +1,7 @@
import data.encodable
open nat encodable
theorem ex : ∃ x, x > 3 :=
theorem ex : ∃ x : nat, x > 3 :=
exists.intro 6 dec_trivial
reveal ex

View file

@ -44,7 +44,7 @@ section
-- check mul_struct nat << This is an error, we opened only the notation from algebra
variables a b c : nat
check a*b*c
definition tst3 : nat := #nat a*b*c
definition tst3 : nat := a*b*c
end
section

View file

@ -40,12 +40,6 @@ check x + i
check n + x
check x + n
check x + i + n
check n + 0
check 0 + n
check 0 + i
check i + 0
check 0 + x
check x + 0
namespace foo
constant eq {A : Type} : A → A → Prop
infixl `=` := eq

View file

@ -45,7 +45,7 @@ end
open nat
example (a : nat) : a > 0 → ∃ x, x > 0 :=
example (a : nat) : a > 0 → ∃ x : nat, x > 0 :=
begin
intro Ha,
existsi a,

View file

@ -1,10 +1,12 @@
open nat
example (a b : nat) (h : false) : a = b :=
by contradiction
example : ∀ (a b : nat), false → a = b :=
by contradiction
example : ∀ (a b : nat), 0 = 1 → a = b :=
example : ∀ (a b : nat), (0:nat) = 1 → a = b :=
by contradiction
definition id {A : Type} (a : A) := a
@ -12,5 +14,5 @@ definition id {A : Type} (a : A) := a
example : ∀ (a b : nat), id false → a = b :=
by contradiction
example : ∀ (a b : nat), id (0 = 1) → a = b :=
example : ∀ (a b : nat), id ((0:nat) = 1) → a = b :=
by contradiction

View file

@ -11,7 +11,7 @@ nat.rec_on n
let t₁ : vector (vector A n₁) n₁ := map tail (tail v) in
h₁ :: r t₁)
example : diag ((1 :: 2 :: 3 :: nil) :: (4 :: 5 :: 6 :: nil) :: (7 :: 8 :: 9 :: nil) :: nil) = 1 :: 5 :: 9 :: nil :=
example : diag ((1 :: 2 :: 3 :: nil) :: (4 :: 5 :: 6 :: nil) :: (7 :: 8 :: 9 :: nil) :: nil) = (1 :: 5 :: 9 :: nil : vector num 3) :=
rfl
end vector

View file

@ -26,7 +26,7 @@ rfl
-- The actual definitional package would not do that.
-- It will always pack things.
definition pair_nat.lt := lex lt lt -- Could also be (lex lt empty_rel)
definition pair_nat.lt := lex nat.lt nat.lt -- Could also be (lex lt empty_rel)
definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt :=
prod.lex.wf lt.wf lt.wf
infixl `≺`:50 := pair_nat.lt

View file

@ -13,5 +13,5 @@ rfl
theorem append_cons {A : Type} (h : A) (t l : list A) : append (h :: t) l = h :: (append t l) :=
rfl
example : append (1 :: 2 :: nil) (3 :: 4 :: 5 :: nil) = (1 :: 2 :: 3 :: 4 :: 5 :: nil) :=
example : append ((1:nat) :: 2 :: nil) (3 :: 4 :: 5 :: nil) = (1 :: 2 :: 3 :: 4 :: 5 :: nil) :=
rfl

View file

@ -14,5 +14,5 @@ rfl
theorem append_cons (h : A) (t l : list A) : append (h :: t) l = h :: (append t l) :=
rfl
example : append (1 :: 2 :: nil) (3 :: 4 :: 5 :: nil) = (1 :: 2 :: 3 :: 4 :: 5 :: nil) :=
example : append ((1:num) :: 2 :: nil) (3 :: 4 :: 5 :: nil) = (1 :: 2 :: 3 :: 4 :: 5 :: nil) :=
rfl

View file

@ -6,6 +6,6 @@ definition Nat := N
open N
definition add : Nat → Nat → Nat
| add O b := b
| add (S a) b := S (add a b)
definition add1 : Nat → Nat → Nat
| add1 O b := b
| add1 (S a) b := S (add1 a b)

View file

@ -11,5 +11,5 @@ rfl
theorem append_cons {A : Type} (h : A) (t l : list A) : append (h :: t) l = h :: (append t l) :=
rfl
example : append (1 :: 2 :: nil) (3 :: 4 :: 5 :: nil) = (1 :: 2 :: 3 :: 4 :: 5 :: nil) :=
example : append ((1:nat) :: 2 :: nil) (3 :: 4 :: 5 :: nil) = (1 :: 2 :: 3 :: 4 :: 5 :: nil) :=
rfl

View file

@ -1,3 +1,4 @@
import standard
set_option pp.implicit true
check ∃x, x = 0
check ∃x, x = (0:num)
check ∃x:num, x = 0

View file

@ -1,6 +1,6 @@
open nat
definition foo := 30
definition foo : nat := 30
namespace foo
definition x : nat := 10

View file

@ -19,9 +19,9 @@ namespace nat
definition fib (n : nat) :=
nat.brec_on n (λ (n : nat),
nat.cases_on n
(λ (b₀ : nat.below zero), succ zero)
(λ (b₀ : nat.below 0), succ 0)
(λ (n₁ : nat), nat.cases_on n₁
(λ b₁ : nat.below (succ zero), succ zero)
(λ b₁ : nat.below (succ 0), succ zero)
(λ (n₂ : nat) (b₂ : nat.below (succ (succ n₂))), pr₁ b₂ + pr₁ (pr₂ b₂))))
theorem fib_0 : fib 0 = 1 :=

View file

@ -167,7 +167,7 @@ namespace finset
theorem empty_union {A : Type} (s : finset A) : ∅ s = s :=
quot.induction_on s (λ l, quot.sound (λ a, by rewrite append_nil_left))
example : to_finset (1::2::nil) to_finset (2::3::nil) = ⟦1 :: 2 :: 2 :: 3 :: nil⟧ :=
example : to_finset ((1:nat)::2::nil) to_finset (2::3::nil) = ⟦1 :: 2 :: 2 :: 3 :: nil⟧ :=
rfl
example : to_finset [(1:nat), 1, 2, 3] = to_finset [2, 3, 1, 2, 2, 3] :=

View file

@ -1,5 +1,5 @@
import data.nat data.sum data.sigma data.bool
open nat sigma
open nat sigma algebra
inductive tree (A : Type) : Type :=
| node : A → forest A → tree A

View file

@ -4,7 +4,7 @@ open nat well_founded decidable prod eq.ops
namespace playground
-- Setup
definition pair_nat.lt := lex lt lt
definition pair_nat.lt := lex nat.lt nat.lt
definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt :=
intro_k (prod.lex.wf lt.wf lt.wf) 20 -- the '20' is for being able to execute the examples... it means 20 recursive call without proof computation
infixl `≺`:50 := pair_nat.lt

View file

@ -26,10 +26,10 @@ definition group_to_struct [instance] (g : group) : group_struct (carrier g)
check group_struct
definition mul {A : Type} {s : group_struct A} (a b : A) : A
definition mul1 {A : Type} {s : group_struct A} (a b : A) : A
:= group_struct.rec (λ mul one inv h1 h2 h3, mul) s a b
infixl `*` := mul
infixl `*` := mul1
constant G1 : group.{1}
constant G2 : group.{1}

View file

@ -28,10 +28,10 @@ definition group_to_struct [instance] (g : group) : group_struct (carrier g)
check group_struct
definition mul {A : Type} [s : group_struct A] (a b : A) : A
definition mul1 {A : Type} [s : group_struct A] (a b : A) : A
:= group_struct.rec (λ mul one inv h1 h2 h3, mul) s a b
infixl `*` := mul
infixl `*` := mul1
section
variable G1 : group

View file

@ -1,4 +1,4 @@
import data.num
check (λ {A : Type.{1}} (a : A), a) 10
check (λ {A : Type.{1}} (a : A), a) (10:num)
check (λ {A} a, a) 10
check (λ a, a) 10
check (λ a, a) (10:num)

View file

@ -8,7 +8,7 @@ inductive univ :=
open univ
definition interp : univ → Type₁
definition interp [reducible] : univ → Type₁
| ubool := bool
| unat := nat
| (uarrow fr to) := interp fr → interp to
@ -23,7 +23,7 @@ definition is_even : nat → bool
| zero := tt
| (succ n) := bnot (is_even n)
example : foo unat 10 = 11 := rfl
example : foo unat (10:nat) = 11 := rfl
example : foo ubool tt = ff := rfl
example : foo (uarrow unat ubool) (λ x : nat, is_even x) 3 = tt := rfl
example : foo (uarrow unat ubool) (λ x : nat, is_even x) 4 = ff := rfl

View file

@ -1,8 +1,8 @@
import data.nat
open nat
example : is_true (2 = 2) := trivial
example : is_false (3 = 2) := trivial
example : is_true (2 < 3) := trivial
example : is_true (3 9) := trivial
example : is_false (3 7) := trivial
example : is_true (2 = (2:nat)) := trivial
example : is_false (3 = (2:nat)) := trivial
example : is_true (2 < (3:nat)) := trivial
example : is_true (3 (9:nat)) := trivial
example : is_false (3 (7:nat)) := trivial

View file

@ -7,5 +7,5 @@ intro a, exact a
end
check @foo
example : foo 10 = 10 :=
example : foo 10 = (10:num) :=
rfl

View file

@ -1,4 +1,5 @@
import data.nat
open algebra
example (a b : Prop) : a → b → a ∧ b :=
begin

View file

@ -12,5 +12,6 @@ section
local attribute foo [coercion]
check s 10
check let a : nat := 10 in s a
end

View file

@ -2,18 +2,18 @@ import logic
constant matrix.{l} : Type.{l} → Type.{l}
constant same_dim {A : Type} : matrix A → matrix A → Prop
constant add {A : Type} (m1 m2 : matrix A) {H : same_dim m1 m2} : matrix A
constant add1 {A : Type} (m1 m2 : matrix A) {H : same_dim m1 m2} : matrix A
theorem same_dim_irrel {A : Type} {m1 m2 : matrix A} {H1 H2 : same_dim m1 m2} : @add A m1 m2 H1 = @add A m1 m2 H2 :=
theorem same_dim_irrel {A : Type} {m1 m2 : matrix A} {H1 H2 : same_dim m1 m2} : @add1 A m1 m2 H1 = @add1 A m1 m2 H2 :=
rfl
open eq
theorem same_dim_eq_args {A : Type} {m1 m2 m1' m2' : matrix A} (H1 : m1 = m1') (H2 : m2 = m2') (H : same_dim m1 m2) : same_dim m1' m2' :=
subst H1 (subst H2 H)
theorem add_congr {A : Type} (m1 m2 m1' m2' : matrix A) (H1 : m1 = m1') (H2 : m2 = m2') (H : same_dim m1 m2) : @add A m1 m2 H = @add A m1' m2' (same_dim_eq_args H1 H2 H) :=
have base : ∀ (H1 : m1 = m1) (H2 : m2 = m2), @add A m1 m2 H = @add A m1 m2 (eq.rec (eq.rec H H1) H2), from
theorem add1_congr {A : Type} (m1 m2 m1' m2' : matrix A) (H1 : m1 = m1') (H2 : m2 = m2') (H : same_dim m1 m2) : @add1 A m1 m2 H = @add1 A m1' m2' (same_dim_eq_args H1 H2 H) :=
have base : ∀ (H1 : m1 = m1) (H2 : m2 = m2), @add1 A m1 m2 H = @add1 A m1 m2 (eq.rec (eq.rec H H1) H2), from
assume H1 H2, rfl,
have general : ∀ (H1 : m1 = m1') (H2 : m2 = m2'), @add A m1 m2 H = @add A m1' m2' (eq.rec (eq.rec H H1) H2), from
have general : ∀ (H1 : m1 = m1') (H2 : m2 = m2'), @add1 A m1 m2 H = @add1 A m1' m2' (eq.rec (eq.rec H H1) H2), from
subst H1 (subst H2 base),
calc @add A m1 m2 H = @add A m1' m2' (eq.rec (eq.rec H H1) H2) : general H1 H2
... = @add A m1' m2' (same_dim_eq_args H1 H2 H) : same_dim_irrel
calc @add1 A m1 m2 H = @add1 A m1' m2' (eq.rec (eq.rec H H1) H2) : general H1 H2
... = @add1 A m1' m2' (same_dim_eq_args H1 H2 H) : same_dim_irrel

View file

@ -2,14 +2,14 @@ import logic
constant matrix.{l} : Type.{l} → Type.{l}
constant same_dim {A : Type} : matrix A → matrix A → Prop
constant add {A : Type} (m1 m2 : matrix A) {H : same_dim m1 m2} : matrix A
constant add1 {A : Type} (m1 m2 : matrix A) {H : same_dim m1 m2} : matrix A
open eq
theorem same_dim_eq_args {A : Type} {m1 m2 m1' m2' : matrix A} (H1 : m1 = m1') (H2 : m2 = m2') (H : same_dim m1 m2) : same_dim m1' m2' :=
subst H1 (subst H2 H)
theorem add_congr {A : Type} (m1 m2 m1' m2' : matrix A) (H1 : m1 = m1') (H2 : m2 = m2') (H : same_dim m1 m2) : @add A m1 m2 H = @add A m1' m2' (same_dim_eq_args H1 H2 H) :=
have base : ∀ (H1 : m1 = m1) (H2 : m2 = m2), @add A m1 m2 H = @add A m1 m2 (eq.rec (eq.rec H H1) H2), from
theorem add1_congr {A : Type} (m1 m2 m1' m2' : matrix A) (H1 : m1 = m1') (H2 : m2 = m2') (H : same_dim m1 m2) : @add1 A m1 m2 H = @add1 A m1' m2' (same_dim_eq_args H1 H2 H) :=
have base : ∀ (H1 : m1 = m1) (H2 : m2 = m2), @add1 A m1 m2 H = @add1 A m1 m2 (eq.rec (eq.rec H H1) H2), from
assume H1 H2, rfl,
have general : ∀ (H1 : m1 = m1') (H2 : m2 = m2'), @add A m1 m2 H = @add A m1' m2' (eq.rec (eq.rec H H1) H2), from
have general : ∀ (H1 : m1 = m1') (H2 : m2 = m2'), @add1 A m1 m2 H = @add1 A m1' m2' (eq.rec (eq.rec H H1) H2), from
subst H1 (subst H2 base),
general H1 H2

View file

@ -3,5 +3,5 @@ open prod nat
example (a b : nat) : size_of (a, true, bool.tt, (λ c d : nat, c + d), option.some b) = a + b :=
rfl
example : size_of (pair (pair (pair 2 true) (λ a : nat, a)) (option.some 3)) = 5 :=
example : size_of (pair (pair (pair (2:nat) true) (λ a : nat, a)) (option.some (3:nat))) = 5 :=
rfl

View file

@ -20,7 +20,7 @@ axiom add_one (n:nat) : n + (succ zero) = succ n
axiom add_le_right {n m : nat} (H : n ≤ m) (k : nat) : n + k ≤ m + k
theorem succ_le {n m : nat} (H : n ≤ m) : succ n ≤ succ m
:= add_one m ▸ add_one n ▸ add_le_right H 1
:= add_one m ▸ add_one n ▸ add_le_right H (1:num)
end nat
end experiment

View file

@ -34,7 +34,7 @@ calc g (succ a) = pr₁ (well_founded.fix g.F (succ a)) : rfl
theorem g_all_zero (a : nat) : g a = zero :=
nat.induction_on a
g_zero
(λ a₁ (ih : g a₁ = zero), calc
(λ a₁ (ih : g a₁ = 0), calc
g (succ a₁) = g (g a₁) : g_succ
... = g 0 : ih
... = 0 : g_zero)

View file

@ -63,14 +63,4 @@ exists.intro
(x+y)
(calc a+b = 2*x + 2*y : by rewrite [Hx, Hy]
... = 2*(x+y) : by rewrite mul.left_distrib)
theorem dvd_of_dvd_add_left {m n₁ n₂ : } (H₁ : m n₁ + n₂) (H₂ : m n₁) : m n₂ :=
obtain (c₁ : nat) (Hc₁ : n₁ + n₂ = m * c₁), from H₁,
obtain (c₂ : nat) (Hc₂ : n₁ = m * c₂), from H₂,
have aux : m * (c₁ - c₂) = n₂, from calc
m * (c₁ - c₂) = m * c₁ - m * c₂ : by rewrite mul_sub_left_distrib
... = n₁ + n₂ - m * c₂ : Hc₁
... = n₁ + n₂ - n₁ : Hc₂
... = n₂ : add_sub_cancel_left,
dvd.intro aux
end hidden

View file

@ -1,83 +1,83 @@
open num bool
example : le 0 0 = tt := rfl
example : le 0 1 = tt := rfl
example : le 0 2 = tt := rfl
example : le 0 3 = tt := rfl
example : num.le 0 0 = tt := rfl
example : num.le 0 1 = tt := rfl
example : num.le 0 2 = tt := rfl
example : num.le 0 3 = tt := rfl
example : le 1 0 = ff := rfl
example : le 1 1 = tt := rfl
example : le 1 2 = tt := rfl
example : le 1 3 = tt := rfl
example : num.le 1 0 = ff := rfl
example : num.le 1 1 = tt := rfl
example : num.le 1 2 = tt := rfl
example : num.le 1 3 = tt := rfl
example : le 2 0 = ff := rfl
example : le 2 1 = ff := rfl
example : le 2 2 = tt := rfl
example : le 2 3 = tt := rfl
example : le 2 4 = tt := rfl
example : le 2 5 = tt := rfl
example : num.le 2 0 = ff := rfl
example : num.le 2 1 = ff := rfl
example : num.le 2 2 = tt := rfl
example : num.le 2 3 = tt := rfl
example : num.le 2 4 = tt := rfl
example : num.le 2 5 = tt := rfl
example : le 3 0 = ff := rfl
example : le 3 1 = ff := rfl
example : le 3 2 = ff := rfl
example : le 3 3 = tt := rfl
example : le 3 4 = tt := rfl
example : le 3 5 = tt := rfl
example : num.le 3 0 = ff := rfl
example : num.le 3 1 = ff := rfl
example : num.le 3 2 = ff := rfl
example : num.le 3 3 = tt := rfl
example : num.le 3 4 = tt := rfl
example : num.le 3 5 = tt := rfl
example : le 4 0 = ff := rfl
example : le 4 1 = ff := rfl
example : le 4 2 = ff := rfl
example : le 4 3 = ff := rfl
example : le 4 4 = tt := rfl
example : le 4 5 = tt := rfl
example : num.le 4 0 = ff := rfl
example : num.le 4 1 = ff := rfl
example : num.le 4 2 = ff := rfl
example : num.le 4 3 = ff := rfl
example : num.le 4 4 = tt := rfl
example : num.le 4 5 = tt := rfl
example : le 5 0 = ff := rfl
example : le 5 1 = ff := rfl
example : le 5 2 = ff := rfl
example : le 5 3 = ff := rfl
example : le 5 4 = ff := rfl
example : le 5 5 = tt := rfl
example : le 5 6 = tt := rfl
example : num.le 5 0 = ff := rfl
example : num.le 5 1 = ff := rfl
example : num.le 5 2 = ff := rfl
example : num.le 5 3 = ff := rfl
example : num.le 5 4 = ff := rfl
example : num.le 5 5 = tt := rfl
example : num.le 5 6 = tt := rfl
example : 0 - 0 = 0 := rfl
example : 0 - 1 = 0 := rfl
example : 0 - 2 = 0 := rfl
example : 0 - 3 = 0 := rfl
example : num.sub 0 0 = 0 := rfl
example : num.sub 0 1 = 0 := rfl
example : num.sub 0 2 = 0 := rfl
example : num.sub 0 3 = 0 := rfl
example : 1 - 0 = 1 := rfl
example : 1 - 1 = 0 := rfl
example : 1 - 2 = 0 := rfl
example : 1 - 3 = 0 := rfl
example : num.sub 1 0 = 1 := rfl
example : num.sub 1 1 = 0 := rfl
example : num.sub 1 2 = 0 := rfl
example : num.sub 1 3 = 0 := rfl
example : 2 - 0 = 2 := rfl
example : 2 - 1 = 1 := rfl
example : 2 - 2 = 0 := rfl
example : 2 - 3 = 0 := rfl
example : 2 - 4 = 0 := rfl
example : num.sub 2 0 = 2 := rfl
example : num.sub 2 1 = 1 := rfl
example : num.sub 2 2 = 0 := rfl
example : num.sub 2 3 = 0 := rfl
example : num.sub 2 4 = 0 := rfl
example : 3 - 0 = 3 := rfl
example : 3 - 1 = 2 := rfl
example : 3 - 2 = 1 := rfl
example : 3 - 3 = 0 := rfl
example : 3 - 4 = 0 := rfl
example : 3 - 5 = 0 := rfl
example : num.sub 3 0 = 3 := rfl
example : num.sub 3 1 = 2 := rfl
example : num.sub 3 2 = 1 := rfl
example : num.sub 3 3 = 0 := rfl
example : num.sub 3 4 = 0 := rfl
example : num.sub 3 5 = 0 := rfl
example : 4 - 0 = 4 := rfl
example : 4 - 1 = 3 := rfl
example : 4 - 2 = 2 := rfl
example : 4 - 3 = 1 := rfl
example : 4 - 4 = 0 := rfl
example : 4 - 5 = 0 := rfl
example : num.sub 4 0 = 4 := rfl
example : num.sub 4 1 = 3 := rfl
example : num.sub 4 2 = 2 := rfl
example : num.sub 4 3 = 1 := rfl
example : num.sub 4 4 = 0 := rfl
example : num.sub 4 5 = 0 := rfl
example : 5 - 0 = 5 := rfl
example : 5 - 1 = 4 := rfl
example : 5 - 2 = 3 := rfl
example : 5 - 3 = 2 := rfl
example : 5 - 4 = 1 := rfl
example : 5 - 5 = 0 := rfl
example : num.sub 5 0 = 5 := rfl
example : num.sub 5 1 = 4 := rfl
example : num.sub 5 2 = 3 := rfl
example : num.sub 5 3 = 2 := rfl
example : num.sub 5 4 = 1 := rfl
example : num.sub 5 5 = 0 := rfl
example : 11 - 5 = 6 := rfl
example : 5 - 11 = 0 := rfl
example : 12 - 7 = 5 := rfl
example : 120 - 12 = 108 := rfl
example : 111 - 11 = 100 := rfl
example : num.sub 11 5 = 6 := rfl
example : num.sub 5 11 = 0 := rfl
example : num.sub 12 7 = 5 := rfl
example : num.sub 120 12 = 108 := rfl
example : num.sub 111 11 = 100 := rfl

View file

@ -3,8 +3,8 @@ import logic data.nat data.prod
open nat prod
open decidable
constant modulo (x : ) (y : ) :
infixl `mod` := modulo
constant modulo1 (x : ) (y : ) :
infixl `mod` := modulo1
constant gcd_aux : ×

View file

@ -1,8 +1,8 @@
inductive one.{l} : Type.{max 1 l} :=
unit : one.{l}
inductive one1.{l} : Type.{max 1 l} :=
unit : one1.{l}
set_option pp.universes true
check one
check one1
inductive one2.{l} : Type.{max 1 l} :=

View file

@ -1,7 +1,7 @@
import data.num
inductive one.{l} : Type.{l} :=
unit : one
inductive one1.{l} : Type.{l} :=
unit : one1
inductive pone : Type.{0} :=
unit : pone
@ -17,7 +17,7 @@ inductive wrap2.{l} (A : Type.{l}) : Type.{max 1 l} :=
mk : A → wrap2 A
set_option pp.universes true
check @one.rec
check @one1.rec
check @pone.rec
check @two.rec
check @wrap.rec

View file

@ -15,12 +15,12 @@ namespace int
constant int : Type.{1}
constant add : int → int → int
constant le : int → int → Prop
constant one : int
constant one1 : int
infixl `+` := add
infix `≤` := le
axiom add_assoc (a b c : int) : (a + b) + c = a + (b + c)
axiom add_le_left {a b : int} (H : a ≤ b) (c : int) : c + a ≤ c + b
definition lt (a b : int) := a + one ≤ b
definition lt (a b : int) := a + one1 ≤ b
infix `<` := lt
end int
@ -28,5 +28,5 @@ open int
open nat
open eq
theorem add_lt_left {a b : int} (H : a < b) (c : int) : c + a < c + b :=
subst (symm (add_assoc c a one)) (add_le_left H c)
subst (symm (add_assoc c a one1)) (add_le_left H c)
end experiment

View file

@ -3,5 +3,5 @@ open encodable decidable bool prod list nat option
variable l : list (nat × bool)
check encode l
eval encode [2, 1]
example : decode (list nat) (encode [1, 1]) = some [1, 1] :=
example : decode (list nat) (encode [(1:nat), 1]) = some [1, 1] :=
rfl

View file

@ -1,9 +1,9 @@
import data.int
open [coercions] int
open [coercions] [classes] int
open [coercions] nat
definition lt (a b : int) := int.le (int.add a 1) b
infix `<` := lt
definition lt1 (a b : int) := int.le (int.add a 1) b
infix `<` := lt1
infixl `+` := int.add
theorem lt_add_succ2 (a : int) (n : nat) : a < a + nat.succ n :=

View file

@ -1,5 +1,5 @@
import logic data.prod
open prod
import data.nat logic data.prod
open prod nat
-- Test tuple notation
check (3, false, 1, true)
check ((3:nat), false, (1:num), true)

View file

@ -1,5 +1,5 @@
import data.rat
open rat
open rat int
attribute rat.of_int [coercion]

View file

@ -1,7 +1,5 @@
import data.rat
open rat
attribute rat.of_int [coercion]
example : 1 + 2⁻¹ + 3 = 3 + 2⁻¹ + 1⁻¹ :=
example : (1:rat) + 2⁻¹ + 3 = 3 + 2⁻¹ + 1⁻¹ :=
rfl

View file

@ -1,7 +1,9 @@
definition x [reducible] := 10
definition y := 20
definition z [irreducible] := 30
definition w := 40
open nat
definition x [reducible] := (10:nat)
definition y := (20:nat)
definition z [irreducible] := (30:nat)
definition w := (40:nat)
(*
local env = get_env()
@ -21,8 +23,6 @@ definition w := 40
assert(tc:whnf(w) == w)
-- Opaque and definitions marked as irreducibled are not unfolded
local tc = non_irreducible_type_checker(env)
assert(tc:whnf(x) == val_x)
assert(tc:whnf(y) == val_y)
assert(tc:whnf(z) == z)
-- Only definitions marked as reducible are unfolded
local tc = reducible_type_checker(env)
@ -30,12 +30,6 @@ definition w := 40
assert(tc:whnf(y) == y)
assert(tc:whnf(z) == z)
assert(tc:whnf(w) == w)
-- Default: only opaque definitions are not unfolded.
-- Opaqueness is a feature of the kernel.
local tc = type_checker(env)
assert(tc:whnf(x) == val_x)
assert(tc:whnf(y) == val_y)
assert(tc:whnf(z) == val_z)
*)
eval [whnf] x

View file

@ -3,4 +3,4 @@ open nat
constant f : nat → nat
theorem tst1 (x y : nat) (H1 : (λ z, z + 0) x = y) : f x = f y :=
by rewrite [▸* at H1, ^add at H1, H1]
by rewrite [▸* at H1, add_zero at H1, H1]

View file

@ -3,7 +3,7 @@ open nat
constant f : nat → nat
example (x y : nat) (H1 : (λ z, z + 0) x = y) : f x = f y :=
by rewrite [▸* at H1, ^ [add, nat.rec_on, of_num] at H1, H1]
by rewrite [▸* at H1, add_zero at H1, H1]
example (x y : nat) (H1 : (λ z, z + 0) x = y) : f x = f y :=
by rewrite [▸* at H1, ↑[add, nat.rec_on, of_num] at H1, H1]
by rewrite [▸* at H1, add_zero at H1, H1]

View file

@ -8,5 +8,5 @@ attribute of_num [unfold 1]
example (x y : nat) (H1 : f x 0 0 = 0) : x = 0 :=
begin
rewrite [▸* at H1, 4>add_zero at H1, H1]
rewrite [↑f at H1, 4>add_zero at H1, H1]
end

View file

@ -16,10 +16,10 @@ namespace list
section
variable {T : Type}
notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l
check [10, 20, 30]
check [(10:num), 20, 30]
end
end list
open list
check [10, 20, 40]
check 10 ◀ 20
check [(10:num), 20, 40]
check (10:num) ◀ 20

View file

@ -1,7 +1,7 @@
import logic
open bool
open bool nat
definition set {{T : Type}} := T → bool
infix `∈` := λx A, A x = tt
check 1 ∈ (λ x, tt)
check 1 ∈ (λ x : nat, tt)

View file

@ -1,7 +1,7 @@
import data.nat
open nat
example : ∀ a b, a + b = b + a :=
example : ∀ a b : nat, a + b = b + a :=
show ∀ a b : nat, a + b = b + a
| 0 0 := rfl
| 0 (succ b) := by rewrite zero_add

View file

@ -1,24 +1,6 @@
set_option structure.eta_thm true
set_option structure.proj_mk_thm true
structure has_mul [class] (A : Type) :=
(mul : A → A → A)
structure has_add [class] (A : Type) :=
(add : A → A → A)
structure has_one [class] (A : Type) :=
(one : A)
structure has_zero [class] (A : Type) :=
(zero : A)
structure has_inv [class] (A : Type) :=
(inv : A → A)
structure has_neg [class] (A : Type) :=
(neg : A → A)
structure semigroup [class] (A : Type) extends has_mul A :=
(mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c))

View file

@ -7,11 +7,11 @@ definition s : nat × nat := pair 10 20
structure test :=
(A : Type) (a : A) (B : A → Type) (b : B a)
definition s2 := ⦃ test, a := 3, b := 10
definition s2 := ⦃ test, a := (3:nat), b := (10:nat)
eval s2
definition s3 := {| test, a := 20, s2 |}
definition s3 := {| test, a := (20:nat), s2 |}
eval s3

View file

@ -19,13 +19,12 @@ definition num_to_nat (n : num) : nat
:= num.rec zero (λ n, pos_num_to_nat n) n
attribute num_to_nat [coercion]
-- Now we can write 2 + 3, the coercion will be applied
check 2 + 3
check (2:num) + 3
-- Define an assump as an alias for the eassumption tactic
definition assump : tactic := tactic.eassumption
theorem T1 {p : nat → Prop} {a : nat } (H : p (a+2)) : ∃ x, p (succ x)
theorem T1 {p : nat → Prop} {a : nat } (H : p (a+(2:num))) : ∃ x, p (succ x)
:= by apply exists.intro; assump
definition is_zero (n : nat)

View file

@ -5,8 +5,8 @@ inductive tree (A : Type) :=
| leaf : A → tree A
| node : tree A → tree A → tree A
inductive one.{l} : Type.{max 1 l} :=
star : one
inductive one1.{l} : Type.{max 1 l} :=
star : one1
set_option pp.universes true
@ -17,7 +17,7 @@ namespace manual
variable {A : Type.{l₁}}
variable (C : tree A → Type.{l₂})
definition below (t : tree A) : Type :=
tree.rec_on t (λ a, one.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
tree.rec_on t (λ a, one1.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
end
section
@ -27,7 +27,7 @@ namespace manual
definition below_rec_on (t : tree A) (H : Π (n : tree A), below C n → C n) : C t
:= have general : C t × below C t, from
tree.rec_on t
(λa, (H (leaf a) one.star, one.star))
(λa, (H (leaf a) one1.star, one1.star))
(λ (l r : tree A) (Hl : C l × below C l) (Hr : C r × below C r),
have b : below C (node l r), from
(pr₁ Hl, pr₁ Hr, pr₂ Hl, pr₂ Hr),

View file

@ -5,8 +5,8 @@ inductive tree (A : Type) :=
| leaf : A → tree A
| node : tree A → tree A → tree A
inductive one.{l} : Type.{max 1 l} :=
star : one
inductive one1.{l} : Type.{max 1 l} :=
star : one1
set_option pp.universes true
@ -17,7 +17,7 @@ namespace tree
variable {A : Type.{l₁}}
variable (C : tree A → Type.{l₂})
definition below (t : tree A) : Type :=
tree.rec_on t (λ a, one.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
tree.rec_on t (λ a, one1.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
end
section
@ -27,7 +27,7 @@ namespace tree
definition below_rec_on (t : tree A) (H : Π (n : tree A), below C n → C n) : C t
:= have general : C t × below C t, from
tree.rec_on t
(λa, (H (leaf a) one.star, one.star))
(λa, (H (leaf a) one1.star, one1.star))
(λ (l r : tree A) (Hl : C l × below C l) (Hr : C r × below C r),
have b : below C (node l r), from
(pr₁ Hl, pr₁ Hr, pr₂ Hl, pr₂ Hr),

View file

@ -5,8 +5,8 @@ inductive tree (A : Type) :=
| leaf : A → tree A
| node : tree A → tree A → tree A
inductive one.{l} : Type.{max 1 l} :=
star : one
inductive one1.{l} : Type.{max 1 l} :=
star : one1
set_option pp.universes true
@ -17,7 +17,7 @@ namespace tree
variable {A : Type.{l₁}}
variable (C : tree A → Type.{l₂})
definition below (t : tree A) : Type :=
tree.rec_on t (λ a, one.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
tree.rec_on t (λ a, one1.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
end
section
@ -27,7 +27,7 @@ namespace tree
definition below_rec_on (t : tree A) (H : Π (n : tree A), below C n → C n) : C t
:= have general : C t × below C t, from
tree.rec_on t
(λa, (H (leaf a) one.star, one.star))
(λa, (H (leaf a) one1.star, one1.star))
(λ (l r : tree A) (Hl : C l × below C l) (Hr : C r × below C r),
have b : below C (node l r), from
(pr₁ Hl, pr₁ Hr, pr₂ Hl, pr₂ Hr),

View file

@ -1,5 +1,5 @@
import logic data.nat
open eq.ops nat
open eq.ops nat algebra
inductive tree (A : Type) :=
| leaf : A → tree A
@ -27,10 +27,10 @@ lt_succ_of_le (le_max_right (height t₁) (height t₂))
theorem height_lt.trans {A : Type} : transitive (@height_lt A) :=
inv_image.trans lt height @lt.trans
example : height_lt (leaf 2) (node (leaf 1) (leaf 2)) :=
example : height_lt (leaf (2:nat)) (node (leaf 1) (leaf 2)) :=
!height_lt.node_right
example : height_lt (leaf 2) (node (node (leaf 1) (leaf 2)) (leaf 3)) :=
example : height_lt (leaf (2:nat)) (node (node (leaf 1) (leaf 2)) (leaf 3)) :=
height_lt.trans !height_lt.node_right !height_lt.node_left
end tree

View file

@ -36,11 +36,11 @@ definition subterm {A : Type} : tree A → tree A → Prop := tc (@direct_subter
definition subterm.wf {A : Type} : well_founded (@subterm A) :=
tc.wf (@direct_subterm.wf A)
example : subterm (leaf 2) (node (leaf 1) (leaf 2)) :=
open nat
example : subterm (leaf (2:nat)) (node (leaf 1) (leaf 2)) :=
!tc.base !direct_subterm.node_r
example : subterm (leaf 2) (node (node (leaf 1) (leaf 2)) (leaf 3)) :=
example : subterm (leaf (2:nat)) (node (node (leaf 1) (leaf 2)) (leaf 3)) :=
have s₁ : subterm (leaf 2) (node (leaf 1) (leaf 2)), from
!tc.base !direct_subterm.node_r,
have s₂ : subterm (node (leaf 1) (leaf 2)) (node (node (leaf 1) (leaf 2)) (leaf 3)), from

View file

@ -1,7 +1,7 @@
import logic
definition proj1 (x : num) (y : num) := x
definition One := 1
definition One : num := 1
(*
local num = Const("num")

View file

@ -1,7 +1,7 @@
import data.prod data.num logic.quantifiers
open prod
open prod nat
check (true, false, 10)
check (true, false, (10:nat))
-- definition a f := f

View file

@ -7,8 +7,6 @@ variable {n : nat}
theorem tst1 : ∀ n m, succ n + succ m = succ (succ (n + m)) :=
begin
intro n m,
esimp [add],
state,
rewrite [succ_add]
end

View file

@ -10,5 +10,5 @@ definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n
(va, vb) := (a :: va, b :: vb)
end
example : unzip ((1, 20) :: (2, 30) :: nil) = (1 :: 2 :: nil, 20 :: 30 :: nil) :=
example : unzip ((1, 20) :: ((2, 30) : nat × nat) :: nil) = (1 :: 2 :: nil, 20 :: 30 :: nil) :=
rfl

View file

@ -75,7 +75,7 @@ namespace vector
(λ (n₁ : nat) (a₁ : A) (v₁ : vector A n₁) (B : bw (vcons a₁ v₁)),
vcons a₁ (pr₁ B)))
example : append (1 :: 2 :: vnil) (3 :: vnil) = 1 :: 2 :: 3 :: vnil :=
example : append ((1:nat) :: 2 :: vnil) (3 :: vnil) = 1 :: 2 :: 3 :: vnil :=
rfl
definition head {A : Type} {n : nat} (v : vector A (succ n)) : A :=