fix(frontends/lean/elaborator): nested begin-end bug
This commit is contained in:
parent
a544d32fcf
commit
81dc201bab
2 changed files with 46 additions and 1 deletions
|
@ -1157,7 +1157,7 @@ static expr translate_local_name(environment const & env, list<expr> const & ctx
|
|||
*/
|
||||
static expr translate(environment const & env, list<expr> const & ctx, expr const & e) {
|
||||
auto fn = [&](expr const & e) {
|
||||
if (is_placeholder(e)) {
|
||||
if (is_placeholder(e) || is_by(e)) {
|
||||
return some_expr(e); // ignore placeholders
|
||||
} else if (is_constant(e)) {
|
||||
if (!env.find(const_name(e))) {
|
||||
|
|
45
tests/lean/run/nested_begin.lean
Normal file
45
tests/lean/run/nested_begin.lean
Normal file
|
@ -0,0 +1,45 @@
|
|||
import logic data.nat.basic
|
||||
open nat
|
||||
|
||||
inductive vector (A : Type) : nat → Type :=
|
||||
vnil : vector A zero,
|
||||
vcons : Π {n : nat}, A → vector A n → vector A (succ n)
|
||||
|
||||
namespace vector
|
||||
definition no_confusion_type {A : Type} {n : nat} (P : Type) (v₁ v₂ : vector A n) : Type :=
|
||||
cases_on v₁
|
||||
(cases_on v₂
|
||||
(P → P)
|
||||
(λ n₂ h₂ t₂, P))
|
||||
(λ n₁ h₁ t₁, cases_on v₂
|
||||
P
|
||||
(λ n₂ h₂ t₂, (Π (H : n₁ = n₂), h₁ = h₂ → eq.rec_on H t₁ = t₂ → P) → P))
|
||||
|
||||
|
||||
definition no_confusion {A : Type} {n : nat} {P : Type} {v₁ v₂ : vector A n} : v₁ = v₂ → no_confusion_type P v₁ v₂ :=
|
||||
assume H₁₂ : v₁ = v₂,
|
||||
begin
|
||||
show no_confusion_type P v₁ v₂, from
|
||||
have aux : v₁ = v₁ → no_confusion_type P v₁ v₁, from
|
||||
take H₁₁,
|
||||
begin
|
||||
apply (cases_on v₁),
|
||||
exact (assume h : P, h),
|
||||
|
||||
intros (n, a, v, h),
|
||||
apply (h rfl),
|
||||
repeat (apply rfl)
|
||||
end,
|
||||
eq.rec_on H₁₂ aux H₁₂
|
||||
end
|
||||
|
||||
theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ :=
|
||||
begin
|
||||
intro h, apply (no_confusion h), intros, assumption
|
||||
end
|
||||
|
||||
theorem vcons.inj₂ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → v₁ = v₂ :=
|
||||
begin
|
||||
intro h, apply (no_confusion h), intros, eassumption
|
||||
end
|
||||
end vector
|
Loading…
Reference in a new issue