feat(library/basic_thms): add ExistsIntro theorem
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
2253d8079b
commit
82dfb553d5
5 changed files with 25 additions and 0 deletions
|
@ -119,5 +119,6 @@ void init_builtin_notation(frontend & f) {
|
|||
f.mark_implicit_arguments(mk_congr2_fn(), 4);
|
||||
f.mark_implicit_arguments(mk_congr_fn(), 6);
|
||||
f.mark_implicit_arguments(mk_forall_elim_fn(), 2);
|
||||
f.mark_implicit_arguments(mk_exists_intro_fn(), 2);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -39,6 +39,7 @@ MK_CONSTANT(congr_fn, name("Congr"));
|
|||
MK_CONSTANT(eqt_elim_fn, name("EqTElim"));
|
||||
MK_CONSTANT(eqt_intro_fn, name("EqTIntro"));
|
||||
MK_CONSTANT(forall_elim_fn, name("ForallElim"));
|
||||
MK_CONSTANT(exists_intro_fn, name("ExistsIntro"));
|
||||
|
||||
#if 0
|
||||
MK_CONSTANT(ext_fn, name("ext"));
|
||||
|
@ -269,6 +270,13 @@ void import_basic_thms(environment const & env) {
|
|||
Fun({{A, TypeU}, {P, A_pred}, {H, mk_forall(A, P)}, {a, A}},
|
||||
EqTElim(P(a), Congr1(A, Fun({x, A}, Bool), P, Fun({x, A}, True), a, H))));
|
||||
|
||||
// ExistsIntro : Pi (A : Type u) (P : A -> bool) (a : A) (H : P a), exists A P
|
||||
env->add_theorem(exists_intro_fn_name, Pi({{A, TypeU}, {P, A_pred}, {a, A}, {H, P(a)}}, mk_exists(A, P)),
|
||||
Fun({{A, TypeU}, {P, A_pred}, {a, A}, {H, P(a)}},
|
||||
Discharge(mk_forall(A, Fun({x, A}, Not(P(x)))), False,
|
||||
Fun({H2, mk_forall(A, Fun({x, A}, Not(P(x))))},
|
||||
Absurd(P(a), H, ForallElim(A, Fun({x, A}, Not(P(x))), H2, a))))));
|
||||
|
||||
#if 0
|
||||
// STOPPED HERE
|
||||
|
||||
|
|
|
@ -122,6 +122,10 @@ expr mk_forall_elim_fn();
|
|||
// \brief (Theorem) {A : Type u}, {P : A -> Bool}, H : (Forall A P), a : A |- Forallelim(A, P, H, a) : P a
|
||||
inline expr ForallElim(expr const & A, expr const & P, expr const & H, expr const & a) { return mk_app(mk_forall_elim_fn(), A, P, H, a); }
|
||||
|
||||
expr mk_exists_intro_fn();
|
||||
// \brief (Theorem) {A : Type u}, {P : A -> Bool}, a : A, H : P a |- ExistsIntro(A, P, a, H) : exists x : A, P
|
||||
inline expr ExistsIntro(expr const & A, expr const & P, expr const & a, expr const & H) { return mk_app(mk_exists_intro_fn(), A, P, a, H); }
|
||||
|
||||
/** \brief Add basic theorems to Environment */
|
||||
void import_basic_thms(environment const & env);
|
||||
|
||||
|
|
5
tests/lean/exists1.lean
Normal file
5
tests/lean/exists1.lean
Normal file
|
@ -0,0 +1,5 @@
|
|||
Variable a : Int
|
||||
Variable P : Int -> Int -> Bool
|
||||
Axiom H : P a a
|
||||
Theorem T : exists x : Int, P a a := ExistsIntro a H.
|
||||
Show Environment 1.
|
7
tests/lean/exists1.lean.expected.out
Normal file
7
tests/lean/exists1.lean.expected.out
Normal file
|
@ -0,0 +1,7 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Assumed: a
|
||||
Assumed: P
|
||||
Assumed: H
|
||||
Proved: T
|
||||
Theorem T : ∃ x : ℤ, P a a := ExistsIntro a H
|
Loading…
Reference in a new issue