feat(library/data/real): prove reals form an ordered ring

This commit is contained in:
Rob Lewis 2015-05-29 14:11:00 +10:00
parent 2273dc669e
commit 82f85a574d
3 changed files with 1188 additions and 6 deletions

View file

@ -105,6 +105,8 @@ theorem inv_pos (n : +) : n⁻¹ > 0 := div_pos_of_pos !rat_of_pnat_is_pos
theorem inv_le_one (n : +) : n⁻¹ ≤ (1 : ) := sorry theorem inv_le_one (n : +) : n⁻¹ ≤ (1 : ) := sorry
theorem inv_lt_one_of_gt {n : +} (H : n~ > 1) : n⁻¹ < (1 : ) := sorry
theorem pone_inv : pone⁻¹ = 1 := rfl -- ? Why is this rfl? theorem pone_inv : pone⁻¹ = 1 := rfl -- ? Why is this rfl?
theorem add_invs_nonneg (m n : +) : 0 ≤ m⁻¹ + n⁻¹ := theorem add_invs_nonneg (m n : +) : 0 ≤ m⁻¹ + n⁻¹ :=
@ -114,10 +116,14 @@ theorem add_invs_nonneg (m n : +) : 0 ≤ m⁻¹ + n⁻¹ :=
repeat apply inv_pos, repeat apply inv_pos,
end end
theorem half_shrink (n : +) : (2 * n)⁻¹ ≤ n⁻¹ := sorry theorem half_shrink_strong (n : +) : (2 * n)⁻¹ < n⁻¹ := sorry
theorem half_shrink (n : +) : (2 * n)⁻¹ ≤ n⁻¹ := le_of_lt !half_shrink_strong
theorem inv_ge_of_le {p q : +} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ := sorry theorem inv_ge_of_le {p q : +} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ := sorry
theorem ge_of_inv_le {p q : +} (H : p⁻¹ ≤ q⁻¹) : q < p := sorry
theorem padd_halves (p : +) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := sorry theorem padd_halves (p : +) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := sorry
theorem add_halves_double (m n : +) : theorem add_halves_double (m n : +) :
@ -145,6 +151,12 @@ theorem s_mul_assoc_lemma_3 (a b n : +) (p : ) :
theorem pnat.mul_le_mul_left (p q : +) : q ≤ p * q := sorry theorem pnat.mul_le_mul_left (p q : +) : q ≤ p * q := sorry
theorem one_lt_two : pone < 2 := sorry
theorem pnat.lt_of_not_le {p q : +} (H : ¬ p ≤ q) : q < p := sorry
theorem pnat.inv_cancel (p : +) : pnat.to_rat p * p⁻¹ = (1 : ) := sorry
------------------------------------- -------------------------------------
-- theorems to add to (ordered) field and/or rat -- theorems to add to (ordered) field and/or rat
@ -170,10 +182,17 @@ theorem add_sub_comm (a b c d : ) : a + b - (c + d) = (a - c) + (b - d) := so
theorem div_helper (a b : ) : (1 / (a * b)) * a = 1 / b := sorry theorem div_helper (a b : ) : (1 / (a * b)) * a = 1 / b := sorry
theorem abs_add_three (a b c : ) : abs (a + b + c) ≤ abs a + abs b + abs c := sorry theorem abs_add_three (a b c : ) : abs (a + b + c) ≤ abs a + abs b + abs c :=
begin
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
apply rat.add_le_add_right,
apply abs_add_le_abs_add_abs
end
theorem add_le_add_three (a b c d e f : ) (H1 : a ≤ d) (H2 : b ≤ e) (H3 : c ≤ f) : theorem add_le_add_three (a b c d e f : ) (H1 : a ≤ d) (H2 : b ≤ e) (H3 : c ≤ f) :
a + b + c ≤ d + e + f := sorry a + b + c ≤ d + e + f :=
by repeat apply rat.add_le_add; repeat assumption
theorem distrib_three_right (a b c d : ) : (a + b + c) * d = a * d + b * d + c * d := sorry theorem distrib_three_right (a b c d : ) : (a + b + c) * d = a * d + b * d + c * d := sorry
@ -183,6 +202,9 @@ definition pceil (a : ) : + := pnat.pos (ceil a + 1) (sorry)
theorem pceil_helper {a : } {n : +} (H : pceil a ≤ n) : n⁻¹ ≤ 1 / a := sorry theorem pceil_helper {a : } {n : +} (H : pceil a ≤ n) : n⁻¹ ≤ 1 / a := sorry
theorem inv_pceil_div (a b : ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a := sorry
theorem s_mul_assoc_lemma_4 {n : +} {ε q : } (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) : theorem s_mul_assoc_lemma_4 {n : +} {ε q : } (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) :
q * n⁻¹ ≤ ε := q * n⁻¹ ≤ ε :=
begin begin
@ -193,7 +215,6 @@ theorem s_mul_assoc_lemma_4 {n : +} {ε q : } (Hε : ε > 0) (Hq : q > 0)
assumption assumption
end end
theorem of_nat_add (a b : ) : of_nat (a + b) = of_nat a + of_nat b := sorry -- did Jeremy add this?
------------------------------------- -------------------------------------
-- small helper lemmas -- small helper lemmas
@ -211,6 +232,10 @@ theorem squeeze {a b : } (H : ∀ j : +, a ≤ b + j⁻¹ + j⁻¹ + j⁻
exact absurd !H (not_le_of_gt Ha) exact absurd !H (not_le_of_gt Ha)
end end
theorem squeeze_2 {a b : } (H : ∀ ε : , ε > 0 → a ≥ b - ε) : a ≥ b := sorry
theorem rewrite_helper (a b c d : ) : a * b - c * d = a * (b - d) + (a - c) * d := theorem rewrite_helper (a b c d : ) : a * b - c * d = a * (b - d) + (a - c) * d :=
sorry sorry
@ -690,7 +715,23 @@ theorem s_add_zero (s : seq) (H : regular s) : sadd s zero ≡ s :=
apply add_invs_nonneg apply add_invs_nonneg
end end
theorem add_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) theorem neg_s_cancel (s : seq) (H : regular s) : sadd s (sneg s) ≡ zero :=
begin
apply equiv.trans,
rotate 3,
apply s_add_comm,
apply s_neg_cancel s H,
apply reg_add_reg,
apply H,
apply reg_neg_reg,
apply H,
apply reg_add_reg,
apply reg_neg_reg,
repeat apply H,
apply zero_is_reg
end
theorem add_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : sadd s t ≡ sadd u v := (Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : sadd s t ≡ sadd u v :=
begin begin
rewrite [↑sadd, ↑equiv at *], rewrite [↑sadd, ↑equiv at *],
@ -1020,6 +1061,20 @@ theorem s_mul_one {s : seq} (H : regular s) : smul s one ≡ s :=
apply H apply H
end end
theorem zero_nequiv_one : ¬ zero ≡ one :=
begin
intro Hz,
rewrite [↑equiv at Hz, ↑zero at Hz, ↑one at Hz],
let H := Hz (2 * 2),
rewrite [rat.zero_sub at H, abs_neg at H, padd_halves at H],
have H' : pone⁻¹ ≤ 2⁻¹, from calc
pone⁻¹ = 1 : by rewrite -pone_inv
... = abs 1 : abs_of_pos zero_lt_one
... ≤ 2⁻¹ : H,
let H'' := ge_of_inv_le H',
apply absurd (one_lt_two) (pnat.not_lt_of_le (pnat.le_of_lt H''))
end
--------------------------------------------- ---------------------------------------------
-- create the type of regular sequences and lift theorems -- create the type of regular sequences and lift theorems
@ -1100,6 +1155,9 @@ theorem r_one_mul (s : reg_seq) : requiv (r_one * s) s :=
theorem r_distrib (s t u : reg_seq) : requiv (s * (t + u)) (s * t + s * u) := theorem r_distrib (s t u : reg_seq) : requiv (s * (t + u)) (s * t + s * u) :=
s_distrib (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) s_distrib (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
theorem r_zero_nequiv_one : ¬ requiv r_zero r_one :=
zero_nequiv_one
---------------------------------------------- ----------------------------------------------
-- take quotients to get and show it's a comm ring -- take quotients to get and show it's a comm ring
@ -1162,6 +1220,10 @@ theorem distrib (x y z : ) : x * (y + z) = x * y + x * z :=
theorem distrib_l (x y z : ) : (x + y) * z = x * z + y * z := theorem distrib_l (x y z : ) : (x + y) * z = x * z + y * z :=
by rewrite [mul_comm, distrib, {x * _}mul_comm, {y * _}mul_comm] -- this shouldn't be necessary by rewrite [mul_comm, distrib, {x * _}mul_comm, {y * _}mul_comm] -- this shouldn't be necessary
theorem zero_ne_one : ¬ zero = one :=
take H : zero = one,
absurd (quot.exact H) (r_zero_nequiv_one)
definition comm_ring [reducible] : algebra.comm_ring := definition comm_ring [reducible] : algebra.comm_ring :=
begin begin
fapply algebra.comm_ring.mk, fapply algebra.comm_ring.mk,

View file

@ -3,4 +3,4 @@ Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis Author: Robert Y. Lewis
-/ -/
import .basic import .basic .order

1120
library/data/real/order.lean Normal file

File diff suppressed because it is too large Load diff