refactor(library/algebra/order): factor out proofs

This commit is contained in:
Leonardo de Moura 2015-01-20 15:28:46 -08:00
parent c51e2ac428
commit 8323d580b1

View file

@ -121,7 +121,6 @@ theorem wf.ind_on.{u v} {A : Type.{u}} [s : wf_strict_order.{u 0} A] {P : A →
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x := (x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf.rec_on x H wf.rec_on x H
/- structures with a weak and a strict order -/ /- structures with a weak and a strict order -/
structure order_pair [class] (A : Type) extends weak_order A, has_lt A := structure order_pair [class] (A : Type) extends weak_order A, has_lt A :=
@ -141,19 +140,13 @@ section
theorem lt_of_le_of_ne (H1 : a ≤ b) (H2 : a ≠ b) : a < b := theorem lt_of_le_of_ne (H1 : a ≤ b) (H2 : a ≠ b) : a < b :=
iff.mp (iff.symm lt_iff_le_and_ne) (and.intro H1 H2) iff.mp (iff.symm lt_iff_le_and_ne) (and.intro H1 H2)
definition order_pair.to_strict_order [instance] [coercion] [s : order_pair A] : strict_order A := private theorem lt_irrefl (s : order_pair A) (a : A) : ¬ a < a :=
strict_order.mk
order_pair.lt
(show ∀a, ¬ a < a, from
take a,
assume H : a < a, assume H : a < a,
have H1 : a ≠ a, from and.elim_right (iff.mp !lt_iff_le_and_ne H), have H1 : a ≠ a, from and.elim_right (iff.mp !lt_iff_le_and_ne H),
H1 rfl) H1 rfl
(show ∀a b c, a < b → b < c → a < c, from
take a b c, private theorem lt_trans (s : order_pair A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c :=
assume lt_ab : a < b,
have le_ab : a ≤ b, from le_of_lt lt_ab, have le_ab : a ≤ b, from le_of_lt lt_ab,
assume lt_bc : b < c,
have le_bc : b ≤ c, from le_of_lt lt_bc, have le_bc : b ≤ c, from le_of_lt lt_bc,
have le_ac : a ≤ c, from le.trans le_ab le_bc, have le_ac : a ≤ c, from le.trans le_ab le_bc,
have ne_ac : a ≠ c, from have ne_ac : a ≠ c, from
@ -162,7 +155,10 @@ section
have eq_ab : a = b, from le.antisymm le_ab le_ba, have eq_ab : a = b, from le.antisymm le_ab le_ba,
have ne_ab : a ≠ b, from and.elim_right (iff.mp lt_iff_le_and_ne lt_ab), have ne_ab : a ≠ b, from and.elim_right (iff.mp lt_iff_le_and_ne lt_ab),
ne_ab eq_ab, ne_ab eq_ab,
show a < c, from lt_of_le_of_ne le_ac ne_ac) show a < c, from lt_of_le_of_ne le_ac ne_ac
definition order_pair.to_strict_order [instance] [coercion] [s : order_pair A] : strict_order A :=
⦃ strict_order, s, lt_irrefl := lt_irrefl s, lt_trans := lt_trans s ⦄
theorem lt_of_lt_of_le : a < b → b ≤ c → a < c := theorem lt_of_lt_of_le : a < b → b ≤ c → a < c :=
assume lt_ab : a < b, assume lt_ab : a < b,
@ -213,15 +209,10 @@ iff.mp le_iff_lt_or_eq le_ab
structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A := structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A :=
(le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b) (le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b)
definition strict_order_with_le.to_order_pair [instance] [coercion] [s : strict_order_with_le A] : private theorem le_refl (s : strict_order_with_le A) (a : A) : a ≤ a :=
strong_order_pair A := iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (or.intro_right _ rfl)
strong_order_pair.mk strict_order_with_le.le
(take a, private theorem le_trans (s : strict_order_with_le A) (a b c : A) (le_ab : a ≤ b) (le_bc : b ≤ c) : a ≤ c :=
show a ≤ a, from iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (or.intro_right _ rfl))
(take a b c,
assume le_ab : a ≤ b,
assume le_bc : b ≤ c,
show a ≤ c, from
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab) or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
(assume lt_ab : a < b, (assume lt_ab : a < b,
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc) or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc)
@ -230,29 +221,34 @@ strong_order_pair.mk strict_order_with_le.le
!strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ (lt.trans lt_ab lt_bc))) !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ (lt.trans lt_ab lt_bc)))
(assume eq_bc : b = c, eq_bc ▸ le_ab)) (assume eq_bc : b = c, eq_bc ▸ le_ab))
(assume eq_ab : a = b, (assume eq_ab : a = b,
eq_ab⁻¹ ▸ le_bc)) eq_ab⁻¹ ▸ le_bc)
(take a b,
assume le_ab : a ≤ b, private theorem le_antisymm (s : strict_order_with_le A) (a b : A) (le_ab : a ≤ b) (le_ba : b ≤ a) : a = b :=
assume le_ba : b ≤ a,
show a = b, from
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab) or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
(assume lt_ab : a < b, (assume lt_ab : a < b,
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba) or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba)
(assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a)) (assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a))
(assume eq_ba : b = a, eq_ba⁻¹)) (assume eq_ba : b = a, eq_ba⁻¹))
(assume eq_ab : a = b, eq_ab)) (assume eq_ab : a = b, eq_ab)
strict_order_with_le.lt
(take a b, private theorem lt_iff_le_ne (s : strict_order_with_le A) (a b : A) : a < b ↔ a ≤ b ∧ a ≠ b :=
iff.intro iff.intro
(assume lt_ab : a < b, (assume lt_ab : a < b,
have le_ab : a ≤ b, have le_ab : a ≤ b, from
from iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ lt_ab), iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ lt_ab),
show a ≤ b ∧ a ≠ b, from and.intro le_ab (ne_of_lt lt_ab)) show a ≤ b ∧ a ≠ b, from and.intro le_ab (ne_of_lt lt_ab))
(assume H : a ≤ b ∧ a ≠ b, (assume H : a ≤ b ∧ a ≠ b,
have H1 : a < b a = b, have H1 : a < b a = b, from
from iff.mp !strict_order_with_le.le_iff_lt_or_eq (and.elim_left H), iff.mp !strict_order_with_le.le_iff_lt_or_eq (and.elim_left H),
show a < b, from or_resolve_left H1 (and.elim_right H))) show a < b, from or_resolve_left H1 (and.elim_right H))
strict_order_with_le.le_iff_lt_or_eq
definition strict_order_with_le.to_order_pair [instance] [coercion] [s : strict_order_with_le A] :
strong_order_pair A :=
⦃ strong_order_pair, s,
le_refl := le_refl s,
le_trans := le_trans s,
le_antisymm := le_antisymm s,
lt_iff_le_ne := lt_iff_le_ne s ⦄
/- linear orders -/ /- linear orders -/
@ -283,15 +279,7 @@ section
definition linear_strong_order_pair.to_linear_order_pair [instance] [coercion] definition linear_strong_order_pair.to_linear_order_pair [instance] [coercion]
[s : linear_strong_order_pair A] : linear_order_pair A := [s : linear_strong_order_pair A] : linear_order_pair A :=
linear_order_pair.mk linear_strong_order_pair.le linear_strong_order_pair.le_refl ⦃ linear_order_pair, s ⦄
linear_strong_order_pair.le_trans linear_strong_order_pair.le_antisymm
linear_strong_order_pair.lt
linear_strong_order_pair.lt_iff_le_ne
(take a b : A,
lt.by_cases
(assume H : a < b, or.inl (le_of_lt H))
(assume H1 : a = b, or.inl (H1 ▸ !le.refl))
(assume H1 : b < a, or.inr (le_of_lt H1)))
theorem le_of_not_lt {a b : A} (H : ¬ a < b) : b ≤ a := theorem le_of_not_lt {a b : A} (H : ¬ a < b) : b ≤ a :=
lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H') lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H')