diff --git a/library/data/fintype/function.lean b/library/data/fintype/function.lean index 9e7ebab77..0c375f8ac 100644 --- a/library/data/fintype/function.lean +++ b/library/data/fintype/function.lean @@ -43,21 +43,36 @@ definition all_lists_of_len : ∀ (n : nat), list (list A) | 0 := [[]] | (succ n) := cons_all_of (elements_of A) (all_lists_of_len n) -lemma nodup_all_lists : ∀ (n : nat), nodup (@all_lists_of_len A _ n) -| 0 := nodup_singleton [] -| (succ n) := nodup_of_cons_all (fintype.unique A) (nodup_all_lists n) +definition all_nodups_of_len [deceqA : decidable_eq A] (n : nat) : list (list A) := + filter nodup (all_lists_of_len n) -lemma mem_all_lists : ∀ (n : nat) (l : list A), length l = n → l ∈ all_lists_of_len n +lemma nodup_all_lists : ∀ {n : nat}, nodup (@all_lists_of_len A _ n) +| 0 := nodup_singleton [] +| (succ n) := nodup_of_cons_all (fintype.unique A) nodup_all_lists + +lemma nodup_all_nodups [deceqA : decidable_eq A] {n : nat} : + nodup (@all_nodups_of_len A _ _ n) := + nodup_filter nodup nodup_all_lists + +lemma mem_all_lists : ∀ {n : nat} {l : list A}, length l = n → l ∈ all_lists_of_len n | 0 [] := assume P, mem_cons [] [] | 0 (a::l) := assume Peq, by contradiction | (succ n) [] := assume Peq, by contradiction | (succ n) (a::l) := assume Peq, begin apply mem_map, apply mem_product, exact fintype.complete a, - exact mem_all_lists n l (succ_inj Peq) + exact mem_all_lists (succ_inj Peq) end -lemma leq_of_mem_all_lists : ∀ {n : nat} ⦃l : list A⦄, +lemma mem_all_nodups [deceqA : decidable_eq A] (n : nat) (l : list A) : + length l = n → nodup l → l ∈ all_nodups_of_len n := + assume Pl Pn, mem_filter_of_mem (mem_all_lists Pl) Pn + +lemma nodup_mem_all_nodups [deceqA : decidable_eq A] {n : nat} ⦃l : list A⦄ : + l ∈ all_nodups_of_len n → nodup l := + assume Pl, of_mem_filter Pl + +lemma length_mem_all_lists : ∀ {n : nat} ⦃l : list A⦄, l ∈ all_lists_of_len n → length l = n | 0 [] := assume P, rfl | 0 (a::l) := assume Pin, assert Peq : (a::l) = [], from mem_singleton Pin, @@ -67,7 +82,11 @@ lemma leq_of_mem_all_lists : ∀ {n : nat} ⦃l : list A⦄, | (succ n) (a::l) := assume Pin, obtain pr Pprin Ppr, from exists_of_mem_map Pin, assert Pl : l ∈ all_lists_of_len n, from mem_of_mem_product_right ((pair_of_cons Ppr) ▸ Pprin), - by rewrite [length_cons, leq_of_mem_all_lists Pl] + by rewrite [length_cons, length_mem_all_lists Pl] + +lemma length_mem_all_nodups [deceqA : decidable_eq A] {n : nat} ⦃l : list A⦄ : + l ∈ all_nodups_of_len n → length l = n := + assume Pl, length_mem_all_lists (mem_of_mem_filter Pl) open fintype lemma length_all_lists : ∀ {n : nat}, length (@all_lists_of_len A _ n) = (card A) ^ n @@ -77,6 +96,7 @@ lemma length_all_lists : ∀ {n : nat}, length (@all_lists_of_len A _ n) = (card ... = (card A ^ n) * card A : nat.mul.comm ... = (card A) ^ (succ n) : pow_succ + end list_of_lists section kth @@ -197,7 +217,7 @@ variable [finA : fintype A] include finA lemma find_in_range [deceqB : decidable_eq B] {f : A → B} (b : B) : - ∀ (l : list A) (P : find b (map f l) < length l), f (kth (find b (map f l)) l P) = b + ∀ (l : list A) P, f (kth (find b (map f l)) l P) = b | [] := assume P, begin exact absurd P !not_lt_zero end | (a::l) := decidable.rec_on (deceqB b (f a)) (assume Peq, begin @@ -262,7 +282,7 @@ lemma list_eq_map_list_to_fun (l : list B) (leq : length l = card A) {rewrite leq, apply find_kth}, rewrite [kth_of_map Plt1 Plt2, list_to_fun_apply l leq _ Plt3], congruence, - rewrite [find_kth_of_nodup Plt1 (unique A)], + rewrite [find_kth_of_nodup Plt1 (unique A)] end lemma fun_to_list_to_fun (f : A → B) : ∀ P, list_to_fun (fun_to_list f) P = f := @@ -280,17 +300,18 @@ variable [finB : fintype B] include finB lemma nodup_all_funs : nodup (@all_funs A B _ _ _) := - dmap_nodup_of_dinj dinj_list_to_fun (nodup_all_lists _) + dmap_nodup_of_dinj dinj_list_to_fun nodup_all_lists lemma all_funs_complete (f : A → B) : f ∈ all_funs := assert Plin : map f (elems A) ∈ all_lists_of_len (card A), - from mem_all_lists (card A) _ (by rewrite length_map), + from mem_all_lists (by rewrite length_map), assert Plfin : list_to_fun (map f (elems A)) (length_map_of_fintype f) ∈ all_funs, from mem_dmap _ Plin, begin rewrite [fun_eq_list_to_fun_map f (length_map_of_fintype f)], apply Plfin end -lemma all_funs_to_all_lists : map fun_to_list (@all_funs A B _ _ _) = all_lists_of_len (card A) := - map_dmap_of_inv_of_pos list_to_fun_to_list leq_of_mem_all_lists +lemma all_funs_to_all_lists : + map fun_to_list (@all_funs A B _ _ _) = all_lists_of_len (card A) := + map_dmap_of_inv_of_pos list_to_fun_to_list length_mem_all_lists lemma length_all_funs : length (@all_funs A B _ _ _) = (card B) ^ (card A) := calc length _ = length (map fun_to_list all_funs) : length_map @@ -328,18 +349,27 @@ definition right_inv {f : A → B} (surj : surjective f) : B → A := λ b, let elts := elems A, k := find b (map f elts) in kth k elts (found_of_surj surj b) -lemma id_of_right_inv {f : A → B} (surj : surjective f) : f ∘ (right_inv surj) = id := +lemma right_inv_of_surj {f : A → B} (surj : surjective f) : f ∘ (right_inv surj) = id := funext (λ b, find_in_range b (elems A) (found_of_surj surj b)) end surj_inv -- inj functions for equal card types are also surj and therefore bij -- the right inv (since it is surj) is also the left inv section inj +open finset + variables {A B : Type} variable [finA : fintype A] include finA variable [deceqA : decidable_eq A] include deceqA + +lemma inj_of_card_image_eq [deceqB : decidable_eq B] {f : A → B} : + finset.card (image f univ) = card A → injective f := + assume Peq, by + rewrite [set.injective_iff_inj_on_univ, -to_set_univ]; + apply inj_on_of_card_image_eq Peq + variable [finB : fintype B] include finB variable [deceqB : decidable_eq B] @@ -361,4 +391,63 @@ lemma surj_of_inj_eq_card : card A = card B → ∀ {f : A → B}, injective f absurd (P⁻¹▸ mem_univ b) Pbnin) end inj + +section perm + +definition all_injs (A : Type) [finA : fintype A] [deceqA : decidable_eq A] : list (A → A) := + dmap (λ l, length l = card A) list_to_fun (all_nodups_of_len (card A)) + + +variable {A : Type} +variable [finA : fintype A] +include finA +variable [deceqA : decidable_eq A] +include deceqA + +lemma nodup_all_injs : nodup (all_injs A) := + dmap_nodup_of_dinj dinj_list_to_fun nodup_all_nodups + +lemma nodup_of_inj {f : A → A} : injective f → nodup (map f (elems A)) := + assume Pinj, nodup_map Pinj (unique A) + +lemma all_injs_complete {f : A → A} : injective f → f ∈ (all_injs A) := + assume Pinj, + assert Plin : map f (elems A) ∈ all_nodups_of_len (card A), + from begin apply mem_all_nodups, apply length_map, apply nodup_of_inj Pinj end, + assert Plfin : list_to_fun (map f (elems A)) (length_map_of_fintype f) ∈ !all_injs, + from mem_dmap _ Plin, + begin rewrite [fun_eq_list_to_fun_map f (length_map_of_fintype f)], apply Plfin end + +open finset + +lemma univ_of_leq_univ_of_nodup {l : list A} (n : nodup l) (leq : length l = card A) : + to_finset_of_nodup l n = univ := + univ_of_card_eq_univ (calc + finset.card (to_finset_of_nodup l n) = length l : rfl + ... = card A : leq) + +lemma inj_of_nodup {f : A → A} : + nodup (map f (elems A)) → injective f := + assume Pnodup, inj_of_card_image_eq (calc + finset.card (image f univ) = finset.card (to_finset (map f (elems A))) : rfl + ... = finset.card (to_finset_of_nodup (map f (elems A)) Pnodup) : {(to_finset_eq_of_nodup Pnodup)⁻¹} + ... = length (map f (elems A)) : rfl + ... = length (elems A) : length_map + ... = card A : rfl) + +lemma inj_of_mem_all_injs {f : A → A} : f ∈ (all_injs A) → injective f := + assume Pfin, obtain l Pex, from exists_of_mem_dmap Pfin, + obtain leq Pin Peq, from Pex, + assert Pmap : map f (elems A) = l, from Peq⁻¹ ▸ list_to_fun_to_list l leq, + begin apply inj_of_nodup, rewrite Pmap, apply nodup_mem_all_nodups Pin end + +lemma perm_of_inj {f : A → A} : injective f → perm (map f (elems A)) (elems A) := + assume Pinj, + assert P1 : univ = to_finset_of_nodup (elems A) (unique A), from rfl, + assert P2 : to_finset_of_nodup (map f (elems A)) (nodup_of_inj Pinj) = univ, + from univ_of_leq_univ_of_nodup _ !length_map, + quot.exact (P1 ▸ P2) + +end perm + end fintype