feat(library/tactic/rewrite_tactic): rewrite tactic with 'iff' lemmas
This commit is contained in:
parent
1dedd2829c
commit
84faef5d5d
9 changed files with 101 additions and 11 deletions
|
@ -61,6 +61,7 @@ name const * g_prod = nullptr;
|
||||||
name const * g_prod_mk = nullptr;
|
name const * g_prod_mk = nullptr;
|
||||||
name const * g_prod_pr1 = nullptr;
|
name const * g_prod_pr1 = nullptr;
|
||||||
name const * g_prod_pr2 = nullptr;
|
name const * g_prod_pr2 = nullptr;
|
||||||
|
name const * g_propext = nullptr;
|
||||||
name const * g_sigma = nullptr;
|
name const * g_sigma = nullptr;
|
||||||
name const * g_sigma_mk = nullptr;
|
name const * g_sigma_mk = nullptr;
|
||||||
name const * g_string = nullptr;
|
name const * g_string = nullptr;
|
||||||
|
@ -190,6 +191,7 @@ void initialize_constants() {
|
||||||
g_prod_mk = new name{"prod", "mk"};
|
g_prod_mk = new name{"prod", "mk"};
|
||||||
g_prod_pr1 = new name{"prod", "pr1"};
|
g_prod_pr1 = new name{"prod", "pr1"};
|
||||||
g_prod_pr2 = new name{"prod", "pr2"};
|
g_prod_pr2 = new name{"prod", "pr2"};
|
||||||
|
g_propext = new name{"propext"};
|
||||||
g_sigma = new name{"sigma"};
|
g_sigma = new name{"sigma"};
|
||||||
g_sigma_mk = new name{"sigma", "mk"};
|
g_sigma_mk = new name{"sigma", "mk"};
|
||||||
g_string = new name{"string"};
|
g_string = new name{"string"};
|
||||||
|
@ -320,6 +322,7 @@ void finalize_constants() {
|
||||||
delete g_prod_mk;
|
delete g_prod_mk;
|
||||||
delete g_prod_pr1;
|
delete g_prod_pr1;
|
||||||
delete g_prod_pr2;
|
delete g_prod_pr2;
|
||||||
|
delete g_propext;
|
||||||
delete g_sigma;
|
delete g_sigma;
|
||||||
delete g_sigma_mk;
|
delete g_sigma_mk;
|
||||||
delete g_string;
|
delete g_string;
|
||||||
|
@ -449,6 +452,7 @@ name const & get_prod_name() { return *g_prod; }
|
||||||
name const & get_prod_mk_name() { return *g_prod_mk; }
|
name const & get_prod_mk_name() { return *g_prod_mk; }
|
||||||
name const & get_prod_pr1_name() { return *g_prod_pr1; }
|
name const & get_prod_pr1_name() { return *g_prod_pr1; }
|
||||||
name const & get_prod_pr2_name() { return *g_prod_pr2; }
|
name const & get_prod_pr2_name() { return *g_prod_pr2; }
|
||||||
|
name const & get_propext_name() { return *g_propext; }
|
||||||
name const & get_sigma_name() { return *g_sigma; }
|
name const & get_sigma_name() { return *g_sigma; }
|
||||||
name const & get_sigma_mk_name() { return *g_sigma_mk; }
|
name const & get_sigma_mk_name() { return *g_sigma_mk; }
|
||||||
name const & get_string_name() { return *g_string; }
|
name const & get_string_name() { return *g_string; }
|
||||||
|
|
|
@ -63,6 +63,7 @@ name const & get_prod_name();
|
||||||
name const & get_prod_mk_name();
|
name const & get_prod_mk_name();
|
||||||
name const & get_prod_pr1_name();
|
name const & get_prod_pr1_name();
|
||||||
name const & get_prod_pr2_name();
|
name const & get_prod_pr2_name();
|
||||||
|
name const & get_propext_name();
|
||||||
name const & get_sigma_name();
|
name const & get_sigma_name();
|
||||||
name const & get_sigma_mk_name();
|
name const & get_sigma_mk_name();
|
||||||
name const & get_string_name();
|
name const & get_string_name();
|
||||||
|
|
|
@ -56,6 +56,7 @@ prod
|
||||||
prod.mk
|
prod.mk
|
||||||
prod.pr1
|
prod.pr1
|
||||||
prod.pr2
|
prod.pr2
|
||||||
|
propext
|
||||||
sigma
|
sigma
|
||||||
sigma.mk
|
sigma.mk
|
||||||
string
|
string
|
||||||
|
|
|
@ -876,7 +876,7 @@ class rewrite_fn {
|
||||||
return replace(e, [&](expr const & e, unsigned) {
|
return replace(e, [&](expr const & e, unsigned) {
|
||||||
if (!has_metavar(e)) {
|
if (!has_metavar(e)) {
|
||||||
return some_expr(e); // done
|
return some_expr(e); // done
|
||||||
} else if (is_binding(e)) {
|
} else if (is_lambda(e)) {
|
||||||
unsigned next_idx = m_esubst.size();
|
unsigned next_idx = m_esubst.size();
|
||||||
expr r = mk_idx_meta(next_idx, m_tc->infer(e).first);
|
expr r = mk_idx_meta(next_idx, m_tc->infer(e).first);
|
||||||
m_esubst.push_back(none_expr());
|
m_esubst.push_back(none_expr());
|
||||||
|
@ -909,14 +909,21 @@ class rewrite_fn {
|
||||||
} else {
|
} else {
|
||||||
// Remark: we discard constraints generated producing the pattern.
|
// Remark: we discard constraints generated producing the pattern.
|
||||||
// Patterns are only used to locate positions where the rule should be applied.
|
// Patterns are only used to locate positions where the rule should be applied.
|
||||||
expr rule = get_rewrite_rule(e);
|
expr rule = get_rewrite_rule(e);
|
||||||
expr rule_type = m_relaxed_tc->whnf(m_relaxed_tc->infer(rule).first).first;
|
expr rule_type = m_relaxed_tc->infer(rule).first;
|
||||||
while (is_pi(rule_type)) {
|
expr new_rule_type = m_relaxed_tc->whnf(rule_type).first;
|
||||||
expr meta = mk_meta(binding_domain(rule_type));
|
while (is_pi(new_rule_type)) {
|
||||||
rule_type = m_relaxed_tc->whnf(instantiate(binding_body(rule_type), meta)).first;
|
rule_type = new_rule_type;
|
||||||
|
expr meta = mk_meta(binding_domain(rule_type));
|
||||||
|
rule_type = instantiate(binding_body(rule_type), meta);
|
||||||
|
new_rule_type = m_relaxed_tc->whnf(rule_type).first;
|
||||||
}
|
}
|
||||||
if (!is_eq(rule_type))
|
if (is_standard(m_env)) {
|
||||||
|
if (!is_eq(rule_type) && !is_iff(rule_type))
|
||||||
|
throw_rewrite_exception("invalid rewrite tactic, given lemma is not an equality or iff");
|
||||||
|
} else if (!is_eq(rule_type)) {
|
||||||
throw_rewrite_exception("invalid rewrite tactic, given lemma is not an equality");
|
throw_rewrite_exception("invalid rewrite tactic, given lemma is not an equality");
|
||||||
|
}
|
||||||
if (get_rewrite_info(e).symm()) {
|
if (get_rewrite_info(e).symm()) {
|
||||||
return to_meta_idx(app_arg(rule_type));
|
return to_meta_idx(app_arg(rule_type));
|
||||||
} else {
|
} else {
|
||||||
|
@ -1097,8 +1104,12 @@ class rewrite_fn {
|
||||||
buffer<constraint> cs;
|
buffer<constraint> cs;
|
||||||
to_buffer(rcs.second, cs);
|
to_buffer(rcs.second, cs);
|
||||||
constraint_seq cs_seq;
|
constraint_seq cs_seq;
|
||||||
expr rule_type = m_relaxed_tc->whnf(m_relaxed_tc->infer(rule, cs_seq), cs_seq);
|
expr rule_type = m_relaxed_tc->infer(rule, cs_seq);
|
||||||
while (is_pi(rule_type)) {
|
constraint_seq new_cs_seq;
|
||||||
|
expr new_rule_type = m_relaxed_tc->whnf(rule_type, new_cs_seq);
|
||||||
|
while (is_pi(new_rule_type)) {
|
||||||
|
rule_type = new_rule_type;
|
||||||
|
cs_seq += new_cs_seq;
|
||||||
expr meta;
|
expr meta;
|
||||||
if (binding_info(rule_type).is_inst_implicit()) {
|
if (binding_info(rule_type).is_inst_implicit()) {
|
||||||
auto mc = mk_class_instance_elaborator(binding_domain(rule_type));
|
auto mc = mk_class_instance_elaborator(binding_domain(rule_type));
|
||||||
|
@ -1107,9 +1118,15 @@ class rewrite_fn {
|
||||||
} else {
|
} else {
|
||||||
meta = mk_meta(binding_domain(rule_type));
|
meta = mk_meta(binding_domain(rule_type));
|
||||||
}
|
}
|
||||||
rule_type = m_relaxed_tc->whnf(instantiate(binding_body(rule_type), meta), cs_seq);
|
rule_type = instantiate(binding_body(rule_type), meta);
|
||||||
|
new_rule_type = m_relaxed_tc->whnf(rule_type , cs_seq);
|
||||||
rule = mk_app(rule, meta);
|
rule = mk_app(rule, meta);
|
||||||
}
|
}
|
||||||
|
lean_assert(is_eq(rule_type) || (is_standard(m_env) && is_iff(rule_type)));
|
||||||
|
if (is_standard(m_env) && is_iff(rule_type)) {
|
||||||
|
rule = apply_propext(rule, rule_type);
|
||||||
|
rule_type = mk_eq(*m_relaxed_tc, app_arg(app_fn(rule_type)), app_arg(rule_type));
|
||||||
|
}
|
||||||
lean_assert(is_eq(rule_type));
|
lean_assert(is_eq(rule_type));
|
||||||
bool symm = get_rewrite_info(orig_elem).symm();
|
bool symm = get_rewrite_info(orig_elem).symm();
|
||||||
expr src;
|
expr src;
|
||||||
|
|
|
@ -393,10 +393,13 @@ bool is_iff(expr const & e) {
|
||||||
expr mk_iff(expr const & lhs, expr const & rhs) {
|
expr mk_iff(expr const & lhs, expr const & rhs) {
|
||||||
return mk_app(mk_constant(get_iff_name()), lhs, rhs);
|
return mk_app(mk_constant(get_iff_name()), lhs, rhs);
|
||||||
}
|
}
|
||||||
|
|
||||||
expr mk_iff_refl(expr const & a) {
|
expr mk_iff_refl(expr const & a) {
|
||||||
return mk_app(mk_constant(get_iff_refl_name()), a);
|
return mk_app(mk_constant(get_iff_refl_name()), a);
|
||||||
}
|
}
|
||||||
|
expr apply_propext(expr const & iff_pr, expr const & iff_term) {
|
||||||
|
lean_assert(is_iff(iff_term));
|
||||||
|
return mk_app(mk_constant(get_propext_name()), app_arg(app_fn(iff_term)), app_arg(iff_term), iff_pr);
|
||||||
|
}
|
||||||
|
|
||||||
expr mk_eq(type_checker & tc, expr const & lhs, expr const & rhs) {
|
expr mk_eq(type_checker & tc, expr const & lhs, expr const & rhs) {
|
||||||
expr A = tc.whnf(tc.infer(lhs).first).first;
|
expr A = tc.whnf(tc.infer(lhs).first).first;
|
||||||
|
|
|
@ -153,6 +153,10 @@ bool is_heq(expr const & e, expr & A, expr & lhs, expr & B, expr & rhs);
|
||||||
bool is_iff(expr const & e);
|
bool is_iff(expr const & e);
|
||||||
expr mk_iff(expr const & lhs, expr const & rhs);
|
expr mk_iff(expr const & lhs, expr const & rhs);
|
||||||
expr mk_iff_refl(expr const & a);
|
expr mk_iff_refl(expr const & a);
|
||||||
|
/** \brief Given <tt>iff_pr : iff_term</tt>, where \c iff_term is of the form <tt>l <-> r</tt>,
|
||||||
|
return the term <tt>propext l r iff_pr</tt>
|
||||||
|
*/
|
||||||
|
expr apply_propext(expr const & iff_pr, expr const & iff_term);
|
||||||
|
|
||||||
/** \brief If in HoTT mode, apply lift.down.
|
/** \brief If in HoTT mode, apply lift.down.
|
||||||
The no_confusion constructions uses lifts in the proof relevant version (aka HoTT mode).
|
The no_confusion constructions uses lifts in the proof relevant version (aka HoTT mode).
|
||||||
|
|
11
tests/lean/run/iff_rw.lean
Normal file
11
tests/lean/run/iff_rw.lean
Normal file
|
@ -0,0 +1,11 @@
|
||||||
|
import logic
|
||||||
|
|
||||||
|
example (a b : Prop) : a ∧ b → b ∧ a :=
|
||||||
|
begin
|
||||||
|
intros, rewrite and.comm, assumption
|
||||||
|
end
|
||||||
|
|
||||||
|
example (a b c : Prop) : a ∧ b ∧ c → b ∧ a ∧ c :=
|
||||||
|
begin
|
||||||
|
intros, rewrite [-and.assoc, {b ∧ a}and.comm, and.assoc], assumption
|
||||||
|
end
|
7
tests/lean/run/true_imp_rw.lean
Normal file
7
tests/lean/run/true_imp_rw.lean
Normal file
|
@ -0,0 +1,7 @@
|
||||||
|
import logic
|
||||||
|
|
||||||
|
example (a b c : Prop) (h : a) : true → true → a :=
|
||||||
|
begin
|
||||||
|
rewrite *true_imp,
|
||||||
|
exact h
|
||||||
|
end
|
42
tests/lean/run/tut_104.lean
Normal file
42
tests/lean/run/tut_104.lean
Normal file
|
@ -0,0 +1,42 @@
|
||||||
|
import data.set
|
||||||
|
namespace function
|
||||||
|
section
|
||||||
|
open set
|
||||||
|
variables {A B : Type}
|
||||||
|
set_option pp.beta false
|
||||||
|
definition bijective (f : A → B) := injective f ∧ surjective f
|
||||||
|
|
||||||
|
lemma injective_eq_inj_on_univ₁ (f : A → B) : injective f = inj_on f univ :=
|
||||||
|
begin
|
||||||
|
esimp [injective, inj_on, univ, mem],
|
||||||
|
apply propext,
|
||||||
|
apply iff.intro,
|
||||||
|
intro Pl a1 a2,
|
||||||
|
rewrite *true_imp,
|
||||||
|
exact Pl a1 a2,
|
||||||
|
intro Pr a1 a2,
|
||||||
|
exact Pr trivial trivial
|
||||||
|
end
|
||||||
|
|
||||||
|
lemma injective_eq_inj_on_univ₂ (f : A → B) : injective f = inj_on f univ :=
|
||||||
|
begin
|
||||||
|
esimp [injective, inj_on, univ, mem],
|
||||||
|
apply propext,
|
||||||
|
apply iff.intro,
|
||||||
|
intro Pl a1 a2,
|
||||||
|
rewrite *(propext !true_imp),
|
||||||
|
exact Pl a1 a2,
|
||||||
|
intro Pr a1 a2,
|
||||||
|
exact Pr trivial trivial
|
||||||
|
end
|
||||||
|
|
||||||
|
lemma injective_eq_inj_on_univ₃ (f : A → B) : injective f = inj_on f univ :=
|
||||||
|
begin
|
||||||
|
esimp [injective, inj_on, univ, mem],
|
||||||
|
apply propext,
|
||||||
|
repeat (apply forall_congr; intros),
|
||||||
|
rewrite *(propext !true_imp)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
end function
|
Loading…
Reference in a new issue