feat(library/data/stream): define corec for infinite streams
This commit is contained in:
parent
dd4dd154ec
commit
8685e8ad7e
1 changed files with 59 additions and 2 deletions
|
@ -3,8 +3,8 @@ Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Leonardo de Moura
|
||||
-/
|
||||
import data.nat
|
||||
open nat
|
||||
import data.nat algebra.function
|
||||
open nat function
|
||||
|
||||
definition stream (A : Type) := nat → A
|
||||
|
||||
|
@ -33,12 +33,21 @@ s n
|
|||
protected theorem eta (s : stream A) : cons (head s) (tail s) = s :=
|
||||
funext (λ i, begin cases i, repeat reflexivity end)
|
||||
|
||||
theorem head_cons (a : A) (s : stream A) : head (cons a s) = a :=
|
||||
rfl
|
||||
|
||||
theorem tail_cons (a : A) (s : stream A) : tail (cons a s) = s :=
|
||||
rfl
|
||||
|
||||
theorem tail_nth_tail (n : nat) (s : stream A) : tail (nth_tail n s) = nth_tail n (tail s) :=
|
||||
funext (λ i, begin esimp [tail, nth_tail], congruence, rewrite add.right_comm end)
|
||||
|
||||
theorem nth_nth_tail (n m : nat) (s : stream A) : nth n (nth_tail m s) = nth (n+m) s :=
|
||||
rfl
|
||||
|
||||
theorem tail_eq_nth_tail (s : stream A) : tail s = nth_tail 1 s :=
|
||||
rfl
|
||||
|
||||
theorem nth_tail_nth_tail (n m : nat) (s : stream A) : nth_tail n (nth_tail m s) = nth_tail (n+m) s :=
|
||||
funext (λ i, begin esimp [nth_tail], rewrite add.assoc end)
|
||||
|
||||
|
@ -69,6 +78,9 @@ stream.ext (λ i, rfl)
|
|||
|
||||
theorem nth_map (n : nat) (s : stream A) : nth n (map f s) = f (nth n s) :=
|
||||
rfl
|
||||
|
||||
theorem tail_map (s : stream A) : tail (map f s) = map f (tail s) :=
|
||||
begin rewrite tail_eq_nth_tail end
|
||||
end map
|
||||
|
||||
section zip
|
||||
|
@ -87,6 +99,12 @@ end zip
|
|||
definition repeat (a : A) : stream A :=
|
||||
λ n, a
|
||||
|
||||
theorem repeat_eq (a : A) : repeat a = cons a (repeat a) :=
|
||||
begin
|
||||
apply stream.ext, intro n,
|
||||
cases n, repeat reflexivity
|
||||
end
|
||||
|
||||
theorem nth_repeat (n : nat) (a : A) : nth n (repeat a) = a :=
|
||||
rfl
|
||||
|
||||
|
@ -109,6 +127,11 @@ begin
|
|||
esimp at *, rewrite IH}
|
||||
end
|
||||
|
||||
theorem iterate_eq (f : A → A) (a : A) : iterate f a = cons a (iterate f (f a)) :=
|
||||
begin
|
||||
rewrite [-stream.eta], congruence, exact !tail_iterate
|
||||
end
|
||||
|
||||
theorem nth_zero_iterate (f : A → A) (a : A) : nth 0 (iterate f a) = a :=
|
||||
rfl
|
||||
|
||||
|
@ -139,4 +162,38 @@ section bisim
|
|||
theorem eq_of_bisim : ∀ {s₁ s₂}, s₁ ~ s₂ → s₁ = s₂ :=
|
||||
λ s₁ s₂ r, stream.ext (λ n, and.elim_left (nth_of_bisim bisim n r))
|
||||
end bisim
|
||||
|
||||
section corec
|
||||
definition corec (f : A → B) (g : A → A) : A → stream B :=
|
||||
λ a, map f (iterate g a)
|
||||
|
||||
theorem corec_def (f : A → B) (g : A → A) (a : A) : corec f g a = map f (iterate g a) :=
|
||||
rfl
|
||||
|
||||
theorem corec_eq (f : A → B) (g : A → A) (a : A) : corec f g a = cons (f a) (corec f g (g a)) :=
|
||||
begin
|
||||
apply stream.ext, intro n,
|
||||
cases n,
|
||||
{reflexivity},
|
||||
{esimp [corec] at *,
|
||||
rewrite [*nth_succ, tail_cons, tail_map, tail_iterate]}
|
||||
end
|
||||
|
||||
theorem corec_id_id_eq_repeat (a : A) : corec id id a = repeat a :=
|
||||
begin
|
||||
apply stream.ext, intro n,
|
||||
induction n with n' ih,
|
||||
{reflexivity},
|
||||
{rewrite [corec_eq, repeat_eq, *nth_succ, *tail_cons], esimp,
|
||||
exact ih}
|
||||
end
|
||||
|
||||
theorem corec_id_f_eq_iterate (f : A → A) (a : A) : corec id f a = iterate f a :=
|
||||
begin
|
||||
apply stream.ext, intro n,
|
||||
cases n,
|
||||
{reflexivity},
|
||||
{rewrite [corec_eq, *nth_succ, tail_iterate]}
|
||||
end
|
||||
end corec
|
||||
end stream
|
||||
|
|
Loading…
Reference in a new issue