feat(library/hott) prove that each group is a contractible groupoid
This commit is contained in:
parent
f023e4999c
commit
86a38c6c3d
1 changed files with 32 additions and 5 deletions
|
@ -4,7 +4,7 @@
|
|||
-- Ported from Coq HoTT
|
||||
import .precategory.basic .precategory.morphism .group
|
||||
|
||||
open path function prod sigma truncation morphism nat path_algebra
|
||||
open path function prod sigma truncation morphism nat path_algebra unit
|
||||
|
||||
structure foo (A : Type) := (bsp : A)
|
||||
|
||||
|
@ -20,8 +20,18 @@ instance [persistent] all_iso
|
|||
--set_option pp.implicit true
|
||||
universe variable l
|
||||
definition path_groupoid (A : Type.{l})
|
||||
(H : is_trunc 1 A) : groupoid.{l l} A :=
|
||||
have C [visible] : precategory.{l l} A, from precategory.mk
|
||||
(H : is_trunc (nat.zero .+1) A) : groupoid.{l l} A :=
|
||||
groupoid.mk
|
||||
(λ (a b : A), a ≈ b)
|
||||
(λ (a b : A), have ish : is_hset (a ≈ b), from succ_is_trunc nat.zero a b, ish)
|
||||
(λ (a b c : A) (p : b ≈ c) (q : a ≈ b), q ⬝ p)
|
||||
(λ (a : A), idpath a)
|
||||
(λ (a b c d : A) (p : c ≈ d) (q : b ≈ c) (r : a ≈ b), concat_pp_p r q p)
|
||||
(λ (a b : A) (p : a ≈ b), concat_p1 p)
|
||||
(λ (a b : A) (p : a ≈ b), concat_1p p)
|
||||
(λ (a b : A) (p : a ≈ b), @is_iso.mk A _ a b p (path.inverse p)
|
||||
sorry sorry)
|
||||
/-have C [visible] : precategory.{l l} A, from precategory.mk
|
||||
(λ a b, a ≈ b)
|
||||
(λ (a b : A), have ish : is_hset (a ≈ b), from succ_is_trunc 0 a b, ish)
|
||||
(λ (a b c : A) (p : b ≈ c) (q : a ≈ b), q ⬝ p)
|
||||
|
@ -41,9 +51,10 @@ groupoid.mk (precategory.hom)
|
|||
have aux2 : p⁻¹ ∘ p ≈ idpath b, from aux,
|
||||
have aux3 : p⁻¹ ∘ p ≈ id, from sorry, aux3)
|
||||
(have aux : p ⬝ p⁻¹ ≈ idpath a, from concat_pV p,
|
||||
sorry))
|
||||
sorry))-/
|
||||
|
||||
definition group_from_contr {ob : Type} (H : is_contr ob)
|
||||
-- A groupoid with a contractible carrier is a group
|
||||
definition group_of_contr {ob : Type} (H : is_contr ob)
|
||||
(G : groupoid ob) : group (hom (center ob) (center ob)) :=
|
||||
begin
|
||||
fapply group.mk,
|
||||
|
@ -57,4 +68,20 @@ begin
|
|||
intro f, exact (morphism.inverse_compose f),
|
||||
end
|
||||
|
||||
-- Conversely we can turn each group into a groupoid on the unit type
|
||||
definition of_group {A : Type.{l}} (G : group A) : groupoid.{l l} unit :=
|
||||
begin
|
||||
fapply groupoid.mk,
|
||||
intros, exact A,
|
||||
intros, apply (@group.carrier_hset A G),
|
||||
intros (a, b, c, g, h), exact (@group.mul A G g h),
|
||||
intro a, exact (@group.one A G),
|
||||
intros, exact ((@group.mul_assoc A G h g f)⁻¹),
|
||||
intros, exact (@group.mul_left_id A G f),
|
||||
intros, exact (@group.mul_right_id A G f),
|
||||
intros, apply is_iso.mk,
|
||||
apply mul_left_inv,
|
||||
apply mul_right_inv,
|
||||
end
|
||||
|
||||
end groupoid
|
||||
|
|
Loading…
Reference in a new issue