feat(hott): Port remainder of §6.3 and §7.2 from the HoTT book

Also prove a theorem similar to Lemma 7.3.1

There are still some sorry's in hit.suspension
This commit is contained in:
Floris van Doorn 2015-06-03 21:41:21 -04:00
parent 883b4fedb9
commit 876aa20ad6
15 changed files with 391 additions and 94 deletions

View file

@ -6,9 +6,9 @@ Authors: Floris van Doorn
Declaration of the n-spheres
-/
import .suspension
import .suspension types.trunc
open eq nat suspension bool is_trunc unit
open eq nat suspension bool is_trunc unit pointed
/-
We can define spheres with the following possible indices:
@ -25,6 +25,12 @@ inductive sphere_index : Type₀ :=
| minus_one : sphere_index
| succ : sphere_index → sphere_index
namespace trunc_index
definition sub_one [reducible] (n : sphere_index) : trunc_index :=
sphere_index.rec_on n -2 (λ n k, k.+1)
postfix `.-1`:(max+1) := sub_one
end trunc_index
namespace sphere_index
/-
notation for sphere_index is -1, 0, 1, ...
@ -52,10 +58,19 @@ namespace sphere_index
definition empty_of_succ_le_minus_two {n : sphere_index} (H : n .+1 ≤ -1) : empty := H
definition of_nat [coercion] [reducible] (n : nat) : sphere_index :=
nat.rec_on n (-1.+1) (λ n k, k.+1)
(nat.rec_on n -1 (λ n k, k.+1)).+1
definition trunc_index_of_sphere_index [coercion] [reducible] (n : sphere_index) : trunc_index :=
sphere_index.rec_on n -1 (λ n k, k.+1)
(sphere_index.rec_on n -2 (λ n k, k.+1)).+1
definition sub_one [reducible] (n : ) : sphere_index :=
nat.rec_on n -1 (λ n k, k.+1)
postfix `.-1`:(max+1) := sub_one
open trunc_index
definition sub_two_eq_sub_one_sub_one (n : ) : n.-2 = n.-1.-1 :=
nat.rec_on n idp (λn p, ap trunc_index.succ p)
end sphere_index
@ -66,21 +81,72 @@ definition sphere : sphere_index → Type₀
| n.+1 := suspension (sphere n)
namespace sphere
definition base {n : } : sphere n := !north
definition pointed_sphere [instance] [constructor] (n : ) : pointed (sphere n) :=
pointed.mk base
definition Sphere [constructor] (n : ) : Pointed := pointed.mk' (sphere n)
namespace ops
abbreviation S := sphere
notation `S.` := Sphere
end ops
open sphere.ops
definition bool_of_sphere [reducible] : sphere 0 → bool :=
suspension.rec tt ff (λx, empty.elim x)
definition bool_of_sphere [reducible] : S 0 → bool :=
suspension.rec ff tt (λx, empty.elim x)
definition sphere_of_bool [reducible] : bool → sphere 0
| tt := !north
| ff := !south
definition sphere_of_bool [reducible] : bool → S 0
| ff := !north
| tt := !south
definition sphere_equiv_bool : sphere 0 ≃ bool :=
definition sphere_equiv_bool : S 0 ≃ bool :=
equiv.MK bool_of_sphere
sphere_of_bool
(λb, match b with | tt := idp | ff := idp end)
(λx, suspension.rec_on x idp idp (empty.rec _))
definition sphere_eq_bool : S 0 = bool :=
ua sphere_equiv_bool
definition sphere_eq_bool_pointed : S. 0 = Bool :=
Pointed_eq sphere_equiv_bool idp
definition pointed_map_sphere (A : Pointed) (n : ) : map₊ (S. n) A ≃ Ω[n] A :=
begin
revert A, induction n with n IH,
{ intro A, rewrite [sphere_eq_bool_pointed], apply pointed_map_bool_equiv},
{ intro A, transitivity _, apply suspension_adjoint_loop (S. n) A, apply IH}
end
end sphere
open sphere sphere.ops
structure weakly_constant [class] {A B : Type} (f : A → B) := --move
(is_constant : Πa a', f a = f a')
namespace trunc
open trunc_index
definition is_trunc_of_pointed_map_sphere_constant (n : ) (A : Type)
(H : Π(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply iff.elim_right !is_trunc_iff_is_contr_loop,
intro a,
apply is_trunc_equiv_closed, apply pointed_map_sphere,
fapply is_contr.mk,
{ exact pointed_map.mk (λx, a) idp},
{ intro f, fapply pointed_map_eq,
{ intro x, esimp, refine !respect_pt⁻¹ ⬝ (!H ⬝ !H⁻¹)},
{ rewrite [▸*,con.right_inv,▸*,con.left_inv]}}
end
definition is_trunc_iff_map_sphere_constant (n : ) (A : Type)
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply is_trunc_of_pointed_map_sphere_constant,
intros, cases f with f p, esimp at *, apply H
end
end trunc

View file

@ -6,9 +6,9 @@ Authors: Floris van Doorn
Declaration of suspension
-/
import .pushout
import .pushout types.pointed
open pushout unit eq equiv equiv.ops
open pushout unit eq equiv equiv.ops pointed
definition suspension (A : Type) : Type := pushout (λ(a : A), star.{0}) (λ(a : A), star.{0})
@ -76,3 +76,36 @@ attribute suspension.rec suspension.elim [unfold-c 6] [recursor 6]
attribute suspension.elim_type [unfold-c 5]
attribute suspension.rec_on suspension.elim_on [unfold-c 3]
attribute suspension.elim_type_on [unfold-c 2]
namespace suspension
definition pointed_suspension [instance] [constructor] (A : Type) : pointed (suspension A) :=
pointed.mk !north
definition suspension_adjoint_loop (A B : Pointed)
: map₊ (pointed.mk' (suspension A)) B ≃ map₊ A (Ω B) :=
begin
fapply equiv.MK,
{ intro f, fapply pointed_map.mk,
intro a, refine !respect_pt⁻¹ ⬝ ap f (merid a ⬝ (merid pt)⁻¹) ⬝ !respect_pt,
refine ap _ !con.right_inv ⬝ !con.left_inv},
{ intro g, fapply pointed_map.mk,
{ esimp, intro a, induction a,
exact pt,
exact pt,
exact g a} ,
{ reflexivity}},
{ intro g, fapply pointed_map_eq,
intro a, esimp [respect_pt], refine !idp_con ⬝ !ap_con ⬝ ap _ !ap_inv
⬝ ap _ !elim_merid ⬝ ap _ !elim_merid ⬝ ap _ (respect_pt g) ⬝ _, exact idp,
-- rewrite [ap_con,ap_inv,+elim_merid,idp_con,respect_pt],
esimp, exact sorry},
{ intro f, fapply pointed_map_eq,
{ esimp, intro a, induction a; all_goals esimp,
exact !respect_pt⁻¹,
exact !respect_pt⁻¹ ⬝ ap f (merid pt),
apply pathover_eq, exact sorry},
{ esimp, exact !con.left_inv⁻¹}},
end
end suspension

View file

@ -41,7 +41,7 @@ namespace is_equiv
protected abbreviation mk [constructor] := @is_equiv.mk' A B f
-- The identity function is an equivalence.
definition is_equiv_id (A : Type) : (@is_equiv A A id) :=
definition is_equiv_id (A : Type) : (is_equiv (id : A → A)) :=
is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp)
-- The composition of two equivalences is, again, an equivalence.
@ -266,13 +266,15 @@ namespace equiv
-- notation for inverse which is not overloaded
abbreviation erfl [constructor] := @equiv.refl
definition equiv_of_eq_fn_of_equiv (f : A ≃ B) {f' : A → B} (Heq : f = f') : A ≃ B :=
definition equiv_of_eq_fn_of_equiv [constructor] (f : A ≃ B) {f' : A → B} (Heq : f = f') : A ≃ B :=
equiv.mk f' (is_equiv_eq_closed Heq)
definition eq_equiv_fn_eq (f : A → B) [H : is_equiv f] (a b : A) : (a = b) ≃ (f a = f b) :=
--rename: eq_equiv_fn_eq_of_is_equiv
definition eq_equiv_fn_eq [constructor] (f : A → B) [H : is_equiv f] (a b : A) : (a = b) ≃ (f a = f b) :=
equiv.mk (ap f) !is_equiv_ap
definition eq_equiv_fn_eq_of_equiv (f : A ≃ B) (a b : A) : (a = b) ≃ (f a = f b) :=
--rename: eq_equiv_fn_eq
definition eq_equiv_fn_eq_of_equiv [constructor] (f : A ≃ B) (a b : A) : (a = b) ≃ (f a = f b) :=
equiv.mk (ap f) !is_equiv_ap
definition equiv_ap (P : A → Type) {a b : A} (p : a = b) : (P a) ≃ (P b) :=

View file

@ -246,6 +246,12 @@ equiv.mk apd10 _
definition eq_of_homotopy [reducible] : f g → f = g :=
(@apd10 A P f g)⁻¹
definition apd10_eq_of_homotopy (p : f g) : apd10 (eq_of_homotopy p) = p :=
right_inv apd10 p
definition eq_of_homotopy_apd10 (p : f = g) : eq_of_homotopy (apd10 p) = p :=
left_inv apd10 p
definition eq_of_homotopy_idp (f : Π x, P x) : eq_of_homotopy (λx : A, idpath (f x)) = idpath f :=
is_equiv.left_inv apd10 idp

View file

@ -181,6 +181,13 @@ namespace iff
open eq.ops
definition of_eq {a b : Type} (H : a = b) : a ↔ b :=
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
definition pi_iff_pi {A : Type} {P Q : A → Type} (H : Πa, (P a ↔ Q a)) : (Πa, P a) ↔ Πa, Q a :=
iff.intro (λp a, iff.elim_left (H a) (p a)) (λq a, iff.elim_right (H a) (q a))
theorem imp_iff {P : Type} (Q : Type) (p : P) : (P → Q) ↔ Q :=
iff.intro (λf, f p) (λq p, q)
end iff
attribute iff.refl [refl]
@ -287,7 +294,7 @@ definition decidable_pred [reducible] {A : Type} (R : A → Type) := Π (a
definition decidable_rel [reducible] {A : Type} (R : A → A → Type) := Π (a b : A), decidable (R a b)
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : decidable_rel (@ne A) :=
show x y : A, decidable (x = y → empty), from _
show Π x y : A, decidable (x = y → empty), from _
definition ite (c : Type) [H : decidable c] {A : Type} (t e : A) : A :=
decidable.rec_on H (λ Hc, t) (λ Hnc, e)

View file

@ -79,6 +79,9 @@ namespace eq
definition apdo [unfold-c 6] (f : Πa, B a) (p : a = a₂) : f a =[p] f a₂ :=
eq.rec_on p idpo
definition oap [unfold-c 6] {C : A → Type} (f : Πa, B a → C a) (p : a = a₂) : f a =[p] f a₂ :=
eq.rec_on p idpo
-- infix `⬝` := concato
infix `⬝o`:75 := concato
-- postfix `⁻¹` := inverseo

View file

@ -38,8 +38,8 @@ namespace is_trunc
definition leq (n m : trunc_index) : Type₀ :=
trunc_index.rec_on n (λm, unit) (λ n p m, trunc_index.rec_on m (λ p, empty) (λ m q p, p m) p) m
notation x <= y := trunc_index.leq x y
notation x ≤ y := trunc_index.leq x y
infix <= := trunc_index.leq
infix ≤ := trunc_index.leq
end trunc_index
infix `+2+`:65 := trunc_index.add
@ -51,7 +51,7 @@ namespace is_trunc
definition empty_of_succ_le_minus_two {n : trunc_index} (H : n .+1 ≤ -2) : empty := H
end trunc_index
definition trunc_index.of_nat [coercion] [reducible] (n : nat) : trunc_index :=
nat.rec_on n (-1.+1) (λ n k, k.+1)
(nat.rec_on n -2 (λ n k, k.+1)).+2
definition sub_two [reducible] (n : nat) : trunc_index :=
nat.rec_on n -2 (λ n k, k.+1)

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn
Theorems about the booleans
-/
open is_equiv eq equiv function is_trunc
open is_equiv eq equiv function is_trunc option unit
namespace bool
@ -35,4 +35,13 @@ namespace bool
definition not_is_hset_type : ¬is_hset Type₀ :=
assume H : is_hset Type₀,
absurd !is_hset.elim eq_bnot_ne_idp
definition bool_equiv_option_unit : bool ≃ option unit :=
begin
fapply equiv.MK,
{ intro b, cases b, exact none, exact some star},
{ intro u, cases u, exact ff, exact tt},
{ intro u, cases u with u, reflexivity, cases u, reflexivity},
{ intro b, cases b, reflexivity, reflexivity},
end
end bool

View file

@ -7,6 +7,8 @@ Partially ported from Coq HoTT
Theorems about path types (identity types)
-/
import .square
open eq sigma sigma.ops equiv is_equiv equiv.ops
-- TODO: Rename transport_eq_... and pathover_eq_... to eq_transport_... and eq_pathover_...
@ -19,7 +21,7 @@ namespace eq
/- The path spaces of a path space are not, of course, determined; they are just the
higher-dimensional structure of the original space. -/
/- some lemmas about whiskering -/
/- some lemmas about whiskering or other higher paths -/
definition whisker_left_con_right (p : a1 = a2) {q q' q'' : a2 = a3} (r : q = q') (s : q' = q'')
: whisker_left p (r ⬝ s) = whisker_left p r ⬝ whisker_left p s :=
@ -51,6 +53,15 @@ namespace eq
cases p, cases r, cases q, exact idp
end
definition con_right_inv2 (p : a1 = a2) : (con.right_inv p)⁻¹ ⬝ con.right_inv p = idp :=
by cases p;exact idp
definition con_left_inv2 (p : a1 = a2) : (con.left_inv p)⁻¹ ⬝ con.left_inv p = idp :=
by cases p;exact idp
definition ap_eq_ap10 {f g : A → B} (p : f = g) (a : A) : ap (λh, h a) p = ap10 p a :=
by cases p;exact idp
/- Transporting in path spaces.
There are potentially a lot of these lemmas, so we adopt a uniform naming scheme:
@ -101,6 +112,10 @@ namespace eq
-- In the comment we give the fibration of the pathover
definition pathover_eq {f g : A → B} {p : a1 = a2} {q : f a1 = g a1} {r : f a2 = g a2}
(s : square q r (ap f p) (ap g p)) : q =[p] r :=
by cases p;apply pathover_idp_of_eq;exact eq_of_vdeg_square s
definition pathover_eq_l (p : a1 = a2) (q : a1 = a3) : q =[p] p⁻¹ ⬝ q := /-(λx, x = a3)-/
by cases p; cases q; exact idpo
@ -160,7 +175,7 @@ namespace eq
definition eq_equiv_eq_symm (a1 a2 : A) : (a1 = a2) ≃ (a2 = a1) :=
equiv.mk inverse _
definition is_equiv_concat_left [instance] (p : a1 = a2) (a3 : A)
definition is_equiv_concat_left [constructor] [instance] (p : a1 = a2) (a3 : A)
: is_equiv (concat p : a2 = a3 → a1 = a3) :=
is_equiv.mk (concat p) (concat p⁻¹)
(con_inv_cancel_left p)
@ -168,10 +183,10 @@ namespace eq
(λq, by cases p;cases q;exact idp)
local attribute is_equiv_concat_left [instance]
definition equiv_eq_closed_left (a3 : A) (p : a1 = a2) : (a1 = a3) ≃ (a2 = a3) :=
definition equiv_eq_closed_left [constructor] (a3 : A) (p : a1 = a2) : (a1 = a3) ≃ (a2 = a3) :=
equiv.mk (concat p⁻¹) _
definition is_equiv_concat_right [instance] (p : a2 = a3) (a1 : A)
definition is_equiv_concat_right [constructor] [instance] (p : a2 = a3) (a1 : A)
: is_equiv (λq : a1 = a2, q ⬝ p) :=
is_equiv.mk (λq, q ⬝ p) (λq, q ⬝ p⁻¹)
(λq, inv_con_cancel_right q p)
@ -179,10 +194,10 @@ namespace eq
(λq, by cases p;cases q;exact idp)
local attribute is_equiv_concat_right [instance]
definition equiv_eq_closed_right (a1 : A) (p : a2 = a3) : (a1 = a2) ≃ (a1 = a3) :=
definition equiv_eq_closed_right [constructor] (a1 : A) (p : a2 = a3) : (a1 = a2) ≃ (a1 = a3) :=
equiv.mk (λq, q ⬝ p) _
definition eq_equiv_eq_closed (p : a1 = a2) (q : a3 = a4) : (a1 = a3) ≃ (a2 = a4) :=
definition eq_equiv_eq_closed [constructor] (p : a1 = a2) (q : a3 = a4) : (a1 = a3) ≃ (a2 = a4) :=
equiv.trans (equiv_eq_closed_left a3 p) (equiv_eq_closed_right a2 q)
definition is_equiv_whisker_left (p : a1 = a2) (q r : a2 = a3)

View file

@ -33,7 +33,7 @@ namespace eq
definition pathover_pathover_fl {a' a₂' : A'} {p : a' = a₂'} {a₂ : A} {f : A' → A}
{b : Πa, B (f a)} {b₂ : B a₂} {q : Π(a' : A'), f a' = a₂} (r : pathover B (b a') (q a') b₂)
(r₂ : pathover B (b a₂') (q a₂') b₂)
(s : squareover B (naturality q p) r r₂ (pathover_ap B f (apdo b p)) (!ap_constant⁻¹ ▸ idpo))
(s : squareover B (natural_square q p) r r₂ (pathover_ap B f (apdo b p)) (!ap_constant⁻¹ ▸ idpo))
: r =[p] r₂ :=
by cases p; esimp at s; apply pathover_idp_of_eq; apply eq_of_vdeg_squareover; exact s

View file

@ -6,71 +6,164 @@ Authors: Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
-/
open core is_trunc
import arity .eq .bool .unit .sigma
open is_trunc eq prod sigma nat equiv option is_equiv bool unit
structure pointed [class] (A : Type) :=
(point : A)
namespace pointed
variables {A B : Type}
definition pt [H : pointed A] := point A
-- Any contractible type is pointed
definition pointed_of_is_contr [instance] (A : Type) [H : is_contr A] : pointed A :=
pointed.mk !center
-- A pi type with a pointed target is pointed
definition pointed_pi [instance] (P : A → Type) [H : Πx, pointed (P x)]
: pointed (Πx, P x) :=
pointed.mk (λx, pt)
-- A sigma type of pointed components is pointed
definition pointed_sigma [instance] (P : A → Type) [G : pointed A]
[H : pointed (P pt)] : pointed (Σx, P x) :=
pointed.mk ⟨pt,pt⟩
definition pointed_prod [instance] (A B : Type) [H1 : pointed A] [H2 : pointed B]
: pointed (A × B) :=
pointed.mk (pt,pt)
definition pointed_loop [instance] (a : A) : pointed (a = a) :=
pointed.mk idp
definition pointed_fun_closed (f : A → B) [H : pointed A] : pointed B :=
pointed.mk (f pt)
end pointed
structure Pointed :=
{carrier : Type}
(Point : carrier)
open pointed Pointed
namespace Pointed
attribute carrier [coercion]
protected definition mk' (A : Type) [H : pointed A] : Pointed := Pointed.mk (point A)
definition pointed_carrier [instance] (A : Pointed) : pointed (carrier A) :=
pointed.mk (Point A)
definition Loop_space [reducible] (A : Pointed) : Pointed :=
Pointed.mk' (point A = point A)
definition Iterated_loop_space (A : Pointed) (n : ) : Pointed :=
nat.rec_on n A (λn X, Loop_space X)
prefix `Ω`:95 := Loop_space
notation `Ω[`:95 n:0 `]`:0 A:95 := Iterated_loop_space A n
end Pointed
open Pointed
namespace pointed
export Pointed (hiding cases_on destruct mk)
abbreviation Cases_on := @Pointed.cases_on
abbreviation Destruct := @Pointed.destruct
abbreviation Mk := @Pointed.mk
attribute Pointed.carrier [coercion]
variables {A B : Type}
definition pt [unfold-c 2] [H : pointed A] := point A
protected abbreviation Mk [constructor] := @Pointed.mk
protected definition mk' [constructor] (A : Type) [H : pointed A] : Pointed :=
Pointed.mk (point A)
definition pointed_carrier [instance] [constructor] (A : Pointed) : pointed A :=
pointed.mk (Point A)
-- Any contractible type is pointed
definition pointed_of_is_contr [instance] [constructor] (A : Type) [H : is_contr A] : pointed A :=
pointed.mk !center
-- A pi type with a pointed target is pointed
definition pointed_pi [instance] [constructor] (P : A → Type) [H : Πx, pointed (P x)]
: pointed (Πx, P x) :=
pointed.mk (λx, pt)
-- A sigma type of pointed components is pointed
definition pointed_sigma [instance] [constructor] (P : A → Type) [G : pointed A]
[H : pointed (P pt)] : pointed (Σx, P x) :=
pointed.mk ⟨pt,pt⟩
definition pointed_prod [instance] [constructor] (A B : Type) [H1 : pointed A] [H2 : pointed B]
: pointed (A × B) :=
pointed.mk (pt,pt)
definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) :=
pointed.mk idp
definition pointed_bool [instance] [constructor] : pointed bool :=
pointed.mk ff
definition Bool [constructor] : Pointed :=
pointed.mk' bool
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
pointed.mk (f pt)
definition Loop_space [reducible] [constructor] (A : Pointed) : Pointed :=
pointed.mk' (point A = point A)
-- definition Iterated_loop_space : Pointed → → Pointed
-- | Iterated_loop_space A 0 := A
-- | Iterated_loop_space A (n+1) := Iterated_loop_space (Loop_space A) n
definition Iterated_loop_space (A : Pointed) (n : ) : Pointed :=
nat.rec_on n (λA, A) (λn IH A, IH (Loop_space A)) A
prefix `Ω`:(max+1) := Loop_space
notation `Ω[`:95 n:0 `]`:0 A:95 := Iterated_loop_space A n
definition iterated_loop_space (A : Type) [H : pointed A] (n : ) : Type :=
carrier (Iterated_loop_space (Pointed.mk' A) n)
Ω[n] (pointed.mk' A)
open equiv.ops
definition Pointed_eq {A B : Pointed} (f : A ≃ B) (p : f pt = pt) : A = B :=
begin
cases A with A a, cases B with B b, esimp at *,
fapply apd011 @Pointed.mk,
{ apply ua f},
{ rewrite [cast_ua,p]},
end
definition add_point [constructor] (A : Type) : Pointed :=
Pointed.mk (none : option A)
postfix `₊`:(max+1) := add_point
-- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A")
end pointed
open pointed
structure pointed_map (A B : Pointed) :=
(map : A → B) (respect_pt : map (Point A) = Point B)
open pointed_map
namespace pointed
abbreviation respect_pt := @pointed_map.respect_pt
-- definition transport_to_sigma {A B : Pointed}
-- {P : Π(X : Type) (m : X → A → B), (Π(f : X), m f (Point A) = Point B) → (Π(m : A → B), m (Point A) = Point B → X) → Type}
-- (H : P (Σ(f : A → B), f (Point A) = Point B) pr1 pr2 sigma.mk) :
-- P (pointed_map A B) map respect_pt pointed_map.mk :=
-- sorry
notation `map₊` := pointed_map
attribute pointed_map.map [coercion]
definition pointed_map_eq {A B : Pointed} {f g : map₊ A B}
(r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g :=
begin
cases f with f p, cases g with g q,
esimp at *,
fapply apo011 pointed_map.mk,
{ exact eq_of_homotopy r},
{ apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con,
rewrite [ap_eq_ap10,↑ap10,apd10_eq_of_homotopy,↑respect_pt at *,s]}
end
definition pointed_map_equiv_left (A : Type) (B : Pointed) : map₊ A₊ B ≃ (A → B) :=
begin
fapply equiv.MK,
{ intro f a, cases f with f p, exact f (some a)},
{ intro f, fapply pointed_map.mk,
intro a, cases a, exact pt, exact f a,
reflexivity},
{ intro f, reflexivity},
{ intro f, cases f with f p, esimp, fapply pointed_map_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
-- set_option pp.notation false
-- definition pointed_map_equiv_right (A : Pointed) (B : Type)
-- : (Σ(b : B), map₊ A (pointed.Mk b)) ≃ (A → B) :=
-- begin
-- fapply equiv.MK,
-- { intro u a, cases u with b f, cases f with f p, esimp at f, exact f a},
-- { intro f, refine ⟨f pt, _⟩, fapply pointed_map.mk,
-- intro a, esimp, exact f a,
-- reflexivity},
-- { intro f, reflexivity},
-- { intro u, cases u with b f, cases f with f p, esimp at *, apply sigma_eq p,
-- esimp, apply sorry
-- }
-- end
definition pointed_map_bool_equiv (B : Pointed) : map₊ Bool B ≃ B :=
begin
fapply equiv.MK,
{ intro f, cases f with f p, exact f tt},
{ intro b, fapply pointed_map.mk,
intro u, cases u, exact pt, exact b,
reflexivity},
{ intro b, reflexivity},
{ intro f, cases f with f p, esimp, fapply pointed_map_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
-- calc
-- map₊ (Pointed.mk' bool) B ≃ map₊ unit₊ B : sorry
-- ... ≃ (unit → B) : pointed_map_equiv
-- ... ≃ B : unit_imp_equiv
end pointed

View file

@ -91,7 +91,7 @@ namespace eq
{ intro s, cases s, apply idp},
end
definition naturality [unfold-c 8] {f g : A → B} (p : f g) (q : a = a') :
definition natural_square [unfold-c 8] {f g : A → B} (p : f g) (q : a = a') :
square (p a) (p a') (ap f q) (ap g q) :=
eq.rec_on q vrfl

View file

@ -130,8 +130,7 @@ namespace is_trunc
section
open decidable
--this is proven differently in init.hedberg
definition is_hset_of_decidable_eq (A : Type)
[H : decidable_eq A] : is_hset A :=
definition is_hset_of_decidable_eq (A : Type) [H : decidable_eq A] : is_hset A :=
is_hset_of_double_neg_elim (λa b, by_contradiction)
end
@ -148,17 +147,43 @@ namespace is_trunc
end
definition is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) :
(Π(a : A), is_trunc n (a = a)) ↔ is_trunc (n.+1) A :=
iff.intro (is_trunc_succ_of_is_trunc_loop Hn) _
is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) :=
iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn)
definition is_trunc_iff_is_contr_loop' {n : }
: (Π(a : A), is_contr (Ω[ n ](Pointed.mk a))) ↔ is_trunc (n.-2.+1) A :=
-- set_option pp.implicit true
-- set_option pp.coercions true
-- set_option pp.notation false
definition is_trunc_iff_is_contr_loop_succ (n : ) (A : Type)
: is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](Pointed.mk a)) :=
begin
induction n with n H,
{ esimp [sub_two,Pointed.Iterated_loop_space], apply iff.intro,
intro H, apply is_hprop_of_imp_is_contr, exact H,
intro H a, exact is_contr_of_inhabited_hprop a},
{ exact sorry},
revert A, induction n with n IH,
{ intros, esimp [Iterated_loop_space], apply iff.intro,
{ intros H a, apply is_contr.mk idp, apply is_hprop.elim},
{ intro H, apply is_hset_of_axiom_K, intros, apply is_hprop.elim}},
{ intros, transitivity _, apply @is_trunc_succ_iff_is_trunc_loop n, constructor,
apply iff.pi_iff_pi, intros,
transitivity _, apply IH,
assert H : Πp : a = a, Ω(Pointed.mk p) = Ω(Pointed.mk (idpath a)),
{ intros, fapply Pointed_eq,
{ esimp, transitivity _,
apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹),
esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv},
{ esimp, apply con_right_inv2}},
transitivity _,
apply iff.pi_iff_pi, intro p,
rewrite [↑Iterated_loop_space,↓Iterated_loop_space (Loop_space (pointed.Mk p)) n,H],
apply iff.refl,
apply iff.imp_iff, reflexivity}
end
definition is_trunc_iff_is_contr_loop (n : ) (A : Type)
: is_trunc (n.-2.+1) A ↔ (Π(a : A), is_contr (Ω[n](pointed.Mk a))) :=
begin
cases n with n,
{ esimp [sub_two,Iterated_loop_space], apply iff.intro,
intro H a, exact is_contr_of_inhabited_hprop a,
intro H, apply is_hprop_of_imp_is_contr, exact H},
{ apply is_trunc_iff_is_contr_loop_succ},
end
end is_trunc open is_trunc

31
hott/types/unit.hlean Normal file
View file

@ -0,0 +1,31 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Theorems about the booleans
-/
open equiv option
namespace unit
definition unit_equiv_option_empty : unit ≃ option empty :=
begin
fapply equiv.MK,
{ intro u, exact none},
{ intro e, exact star},
{ intro e, cases e, reflexivity, contradiction},
{ intro u, cases u, reflexivity},
end
definition unit_imp_equiv (A : Type) : (unit → A) ≃ A :=
begin
fapply equiv.MK,
{ intro f, exact f star},
{ intro a u, exact a},
{ intro a, reflexivity},
{ intro f, apply eq_of_homotopy, intro u, cases u, reflexivity},
end
end unit

View file

@ -254,6 +254,13 @@ iff.intro (assume H, trivial) (assume H, Ha)
theorem iff_self (a : Prop) : (a ↔ a) ↔ true :=
iff_true_of_self !iff.refl
theorem forall_iff_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a ↔ Q a)) : (∀a, P a) ↔ ∀a, Q a :=
iff.intro (λp a, iff.elim_left (H a) (p a)) (λq a, iff.elim_right (H a) (q a))
theorem imp_iff {P : Prop} (Q : Prop) (p : P) : (P → Q) ↔ Q :=
iff.intro (λf, f p) (λq p, q)
/- if-then-else -/
section