feat(library/data/stream): define stream mem predicate and prove basic theorems

This commit is contained in:
Leonardo de Moura 2015-05-24 15:47:33 -07:00
parent 607a5fbb86
commit 880027ea0e

View file

@ -65,16 +65,38 @@ rfl
protected theorem ext {s₁ s₂ : stream A} : (∀ n, nth n s₁ = nth n s₂) → s₁ = s₂ := protected theorem ext {s₁ s₂ : stream A} : (∀ n, nth n s₁ = nth n s₂) → s₁ = s₂ :=
assume h, funext h assume h, funext h
protected definition all (p : A → Prop) (s : stream A) := ∀ n, p (nth n s) definition all (p : A → Prop) (s : stream A) := ∀ n, p (nth n s)
protected definition any (p : A → Prop) (s : stream A) := ∃ n, p (nth n s) definition any (p : A → Prop) (s : stream A) := ∃ n, p (nth n s)
theorem all_def (p : A → Prop) (s : stream A) : stream.all p s = ∀ n, p (nth n s) := theorem all_def (p : A → Prop) (s : stream A) : all p s = ∀ n, p (nth n s) :=
rfl rfl
theorem any_def (p : A → Prop) (s : stream A) : stream.any p s = ∃ n, p (nth n s) := theorem any_def (p : A → Prop) (s : stream A) : any p s = ∃ n, p (nth n s) :=
rfl rfl
definition mem (a : A) (s : stream A) := any (λ b, a = b) s
notation e ∈ s := mem e s
theorem mem_cons (a : A) (s : stream A) : a ∈ (a::s) :=
exists.intro 0 rfl
theorem mem_cons_of_mem {a : A} {s : stream A} (b : A) : a ∈ s → a ∈ b :: s :=
assume ains, obtain n (h : a = nth n s), from ains,
exists.intro (succ n) (by rewrite [nth_succ, tail_cons, h]; esimp)
theorem eq_or_mem_of_mem_cons {a b : A} {s : stream A} : a ∈ b::s → a = b a ∈ s :=
assume ainbs, obtain n (h : a = nth n (b::s)), from ainbs,
begin
cases n with n',
{left, exact h},
{right, rewrite [nth_succ at h, tail_cons at h], existsi n', exact h}
end
theorem mem_of_nth_eq {n : nat} {s : stream A} {a : A} : a = nth n s → a ∈ s :=
assume h, exists.intro n h
section map section map
variable (f : A → B) variable (f : A → B)
@ -101,6 +123,10 @@ by rewrite [-stream.eta, map_eq]
theorem map_id (s : stream A) : map id s = s := theorem map_id (s : stream A) : map id s = s :=
rfl rfl
theorem mem_map {a : A} {s : stream A} : a ∈ s → f a ∈ map f s :=
assume ains, obtain n (h : a = nth n s), from ains,
exists.intro n (by rewrite [nth_map, h]; esimp)
end map end map
section zip section zip
@ -128,6 +154,9 @@ end zip
definition const (a : A) : stream A := definition const (a : A) : stream A :=
λ n, a λ n, a
theorem mem_const (a : A) : a ∈ const a :=
exists.intro 0 rfl
theorem const_eq (a : A) : const a = a :: const a := theorem const_eq (a : A) : const a = a :: const a :=
begin begin
apply stream.ext, intro n, apply stream.ext, intro n,
@ -264,6 +293,30 @@ by esimp [interleave]; rewrite corec_eq
theorem interleave_tail_tail (s₁ s₂ : stream A) : tail s₁ ⋈ tail s₂ = tail (tail (s₁ ⋈ s₂)) := theorem interleave_tail_tail (s₁ s₂ : stream A) : tail s₁ ⋈ tail s₂ = tail (tail (s₁ ⋈ s₂)) :=
by rewrite [interleave_eq s₁ s₂] by rewrite [interleave_eq s₁ s₂]
theorem nth_interleave_left : ∀ (n : nat) (s₁ s₂ : stream A), nth (2*n) (s₁ ⋈ s₂) = nth n s₁
| 0 s₁ s₂ := rfl
| (succ n) s₁ s₂ :=
begin
change nth (succ (succ (2*n))) (s₁ ⋈ s₂) = nth (succ n) s₁,
rewrite [*nth_succ, interleave_eq, *tail_cons, nth_interleave_left]
end
theorem nth_interleave_right : ∀ (n : nat) (s₁ s₂ : stream A), nth (2*n+1) (s₁ ⋈ s₂) = nth n s₂
| 0 s₁ s₂ := rfl
| (succ n) s₁ s₂ :=
begin
change nth (succ (succ (2*n+1))) (s₁ ⋈ s₂) = nth (succ n) s₂,
rewrite [*nth_succ, interleave_eq, *tail_cons, nth_interleave_right]
end
theorem mem_interleave_left {a : A} {s₁ : stream A} (s₂ : stream A) : a ∈ s₁ → a ∈ s₁ ⋈ s₂ :=
assume ains₁, obtain n (h : a = nth n s₁), from ains₁,
exists.intro (2*n) (by rewrite [h, nth_interleave_left]; esimp)
theorem mem_interleave_right {a : A} {s₁ : stream A} (s₂ : stream A) : a ∈ s₂ → a ∈ s₁ ⋈ s₂ :=
assume ains₂, obtain n (h : a = nth n s₂), from ains₂,
exists.intro (2*n+1) (by rewrite [h, nth_interleave_right]; esimp)
definition even (s : stream A) : stream A := definition even (s : stream A) : stream A :=
corec corec
(λ s, head s) (λ s, head s)
@ -314,6 +367,25 @@ eq_of_bisim
end) end)
rfl rfl
theorem nth_even : ∀ (n : nat) (s : stream A), nth n (even s) = nth (2*n) s
| 0 s := rfl
| (succ n) s :=
begin
change nth (succ n) (even s) = nth (succ (succ (2 * n))) s,
rewrite [+nth_succ, tail_even, nth_even]
end
theorem nth_odd : ∀ (n : nat) (s : stream A), nth n (odd s) = nth (2*n + 1) s :=
λ n s, by rewrite [odd_eq, nth_even]
theorem mem_of_mem_even (a : A) (s : stream A) : a ∈ even s → a ∈ s :=
assume aines, obtain n (h : a = nth n (even s)), from aines,
exists.intro (2*n) (by rewrite [h, nth_even]; esimp)
theorem mem_of_mem_odd (a : A) (s : stream A) : a ∈ odd s → a ∈ s :=
assume ainos, obtain n (h : a = nth n (odd s)), from ainos,
exists.intro (2*n+1) (by rewrite [h, nth_odd]; esimp)
open list open list
definition append : list A → stream A → stream A definition append : list A → stream A → stream A
| [] s := s | [] s := s
@ -344,6 +416,19 @@ theorem drop_append : ∀ (l : list A) (s : stream A), drop (length l) (l ++ s)
theorem append_head_tail (s : stream A) : [head s] ++ tail s = s := theorem append_head_tail (s : stream A) : [head s] ++ tail s = s :=
by rewrite [cons_append, nil_append, stream.eta] by rewrite [cons_append, nil_append, stream.eta]
theorem mem_append_right : ∀ {a : A} (l : list A) {s : stream A}, a ∈ s → a ∈ l ++ s
| a [] s h := h
| a (b::l) s h :=
have ih : a ∈ l ++ s, from mem_append_right l h,
!mem_cons_of_mem ih
theorem mem_append_left : ∀ {a : A} {l : list A} (s : stream A), a ∈ l → a ∈ l ++ s
| a [] s h := absurd h !not_mem_nil
| a (b::l) s h :=
or.elim (list.eq_or_mem_of_mem_cons h)
(λ (aeqb : a = b), exists.intro 0 aeqb)
(λ (ainl : a ∈ l), mem_cons_of_mem b (mem_append_left s ainl))
definition approx : nat → stream A → list A definition approx : nat → stream A → list A
| 0 s := [] | 0 s := []
| (n+1) s := head s :: approx n (tail s) | (n+1) s := head s :: approx n (tail s)
@ -406,6 +491,9 @@ theorem cycle_eq : ∀ (l : list A) (h : l ≠ nil), cycle l h = l ++ cycle l h
end, end,
gen l a gen l a
theorem mem_cycle {a : A} {l : list A} : ∀ (h : l ≠ []), a ∈ l → a ∈ cycle l h :=
assume h ainl, by rewrite [cycle_eq]; exact !mem_append_left ainl
theorem cycle_singleton (a : A) (h : [a] ≠ nil) : cycle [a] h = const a := theorem cycle_singleton (a : A) (h : [a] ≠ nil) : cycle [a] h = const a :=
coinduction coinduction
rfl rfl