feat(library/standard): add basic set theory that does not rely on classical axioms

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-27 13:18:33 -07:00
parent 3a77226b92
commit 88130f339e

64
library/standard/set.lean Normal file
View file

@ -0,0 +1,64 @@
--- Copyright (c) 2014 Jeremy Avigad. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Jeremy Avigad, Leonardo de Moura
import logic funext bool
using eq_proofs bool
namespace set
definition set (T : Type) := T → bool
definition mem {T : Type} (x : T) (s : set T) := (s x) = '1
infix `∈`:50 := mem
section
parameter {T : Type}
definition empty : set T := λx, '0
notation `∅`:max := empty
theorem mem_empty (x : T) : ¬ (x ∈ ∅)
:= assume H : x ∈ ∅, absurd H b0_ne_b1
definition univ : set T := λx, '1
theorem mem_univ (x : T) : x ∈ univ
:= refl _
definition inter (A B : set T) : set T := λx, A x && B x
infixl `∩`:70 := inter
theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B)
:= iff_intro
(assume H, and_intro (band_eq_b1_elim_left H) (band_eq_b1_elim_right H))
(assume H,
have e1 : A x = '1, from and_elim_left H,
have e2 : B x = '1, from and_elim_right H,
calc A x && B x = '1 && B x : {e1}
... = '1 && '1 : {e2}
... = '1 : band_b1_left '1)
theorem inter_comm (A B : set T) : A ∩ B = B ∩ A
:= funext (λx, band_comm (A x) (B x))
theorem inter_assoc (A B C : set T) : (A ∩ B) ∩ C = A ∩ (B ∩ C)
:= funext (λx, band_assoc (A x) (B x) (C x))
definition union (A B : set T) : set T := λx, A x || B x
infixl ``:65 := union
theorem mem_union (x : T) (A B : set T) : x ∈ A B ↔ (x ∈ A x ∈ B)
:= iff_intro
(assume H, bor_to_or H)
(assume H, or_elim H
(assume Ha : A x = '1,
show A x || B x = '1, from Ha⁻¹ ▸ bor_b1_left (B x))
(assume Hb : B x = '1,
show A x || B x = '1, from Hb⁻¹ ▸ bor_b1_right (A x)))
theorem union_comm (A B : set T) : A B = B A
:= funext (λx, bor_comm (A x) (B x))
theorem union_assoc (A B C : set T) : (A B) C = A (B C)
:= funext (λx, bor_assoc (A x) (B x) (C x))
end
end