feat(library/standard): add basic set theory that does not rely on classical axioms
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
3a77226b92
commit
88130f339e
1 changed files with 64 additions and 0 deletions
64
library/standard/set.lean
Normal file
64
library/standard/set.lean
Normal file
|
@ -0,0 +1,64 @@
|
|||
--- Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Jeremy Avigad, Leonardo de Moura
|
||||
import logic funext bool
|
||||
using eq_proofs bool
|
||||
|
||||
namespace set
|
||||
definition set (T : Type) := T → bool
|
||||
definition mem {T : Type} (x : T) (s : set T) := (s x) = '1
|
||||
infix `∈`:50 := mem
|
||||
|
||||
section
|
||||
parameter {T : Type}
|
||||
|
||||
definition empty : set T := λx, '0
|
||||
notation `∅`:max := empty
|
||||
|
||||
theorem mem_empty (x : T) : ¬ (x ∈ ∅)
|
||||
:= assume H : x ∈ ∅, absurd H b0_ne_b1
|
||||
|
||||
definition univ : set T := λx, '1
|
||||
|
||||
theorem mem_univ (x : T) : x ∈ univ
|
||||
:= refl _
|
||||
|
||||
definition inter (A B : set T) : set T := λx, A x && B x
|
||||
infixl `∩`:70 := inter
|
||||
|
||||
theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B)
|
||||
:= iff_intro
|
||||
(assume H, and_intro (band_eq_b1_elim_left H) (band_eq_b1_elim_right H))
|
||||
(assume H,
|
||||
have e1 : A x = '1, from and_elim_left H,
|
||||
have e2 : B x = '1, from and_elim_right H,
|
||||
calc A x && B x = '1 && B x : {e1}
|
||||
... = '1 && '1 : {e2}
|
||||
... = '1 : band_b1_left '1)
|
||||
|
||||
theorem inter_comm (A B : set T) : A ∩ B = B ∩ A
|
||||
:= funext (λx, band_comm (A x) (B x))
|
||||
|
||||
theorem inter_assoc (A B C : set T) : (A ∩ B) ∩ C = A ∩ (B ∩ C)
|
||||
:= funext (λx, band_assoc (A x) (B x) (C x))
|
||||
|
||||
definition union (A B : set T) : set T := λx, A x || B x
|
||||
infixl `∪`:65 := union
|
||||
|
||||
theorem mem_union (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B)
|
||||
:= iff_intro
|
||||
(assume H, bor_to_or H)
|
||||
(assume H, or_elim H
|
||||
(assume Ha : A x = '1,
|
||||
show A x || B x = '1, from Ha⁻¹ ▸ bor_b1_left (B x))
|
||||
(assume Hb : B x = '1,
|
||||
show A x || B x = '1, from Hb⁻¹ ▸ bor_b1_right (A x)))
|
||||
|
||||
theorem union_comm (A B : set T) : A ∪ B = B ∪ A
|
||||
:= funext (λx, bor_comm (A x) (B x))
|
||||
|
||||
theorem union_assoc (A B C : set T) : (A ∪ B) ∪ C = A ∪ (B ∪ C)
|
||||
:= funext (λx, bor_assoc (A x) (B x) (C x))
|
||||
|
||||
end
|
||||
end
|
Loading…
Reference in a new issue