feat(library/data/fin) : establish add_comm_group on fin using madd
This commit is contained in:
parent
f60cdee14b
commit
8817042318
1 changed files with 41 additions and 4 deletions
|
@ -5,7 +5,7 @@ Authors: Haitao Zhang, Leonardo de Moura
|
||||||
|
|
||||||
Finite ordinal types.
|
Finite ordinal types.
|
||||||
-/
|
-/
|
||||||
import data.list.basic data.finset.basic data.fintype.card
|
import data.list.basic data.finset.basic data.fintype.card algebra.group
|
||||||
open eq.ops nat function list finset fintype
|
open eq.ops nat function list finset fintype
|
||||||
|
|
||||||
structure fin (n : nat) := (val : nat) (is_lt : val < n)
|
structure fin (n : nat) := (val : nat) (is_lt : val < n)
|
||||||
|
@ -104,9 +104,6 @@ lift i 1
|
||||||
definition maxi [reducible] : fin (succ n) :=
|
definition maxi [reducible] : fin (succ n) :=
|
||||||
mk n !lt_succ_self
|
mk n !lt_succ_self
|
||||||
|
|
||||||
definition sub_max : fin (succ n) → fin (succ n)
|
|
||||||
| (mk iv ilt) := mk (succ iv mod (succ n)) (mod_lt _ !zero_lt_succ)
|
|
||||||
|
|
||||||
theorem val_lift : ∀ (i : fin n) (m : nat), val i = val (lift i m)
|
theorem val_lift : ∀ (i : fin n) (m : nat), val i = val (lift i m)
|
||||||
| (mk v h) m := rfl
|
| (mk v h) m := rfl
|
||||||
|
|
||||||
|
@ -187,6 +184,10 @@ take f₁ f₂ Peq, funext (λ i,
|
||||||
assert Peqi : lift_fun f₁ (lift_succ i) = lift_fun f₂ (lift_succ i), from congr_fun Peq _,
|
assert Peqi : lift_fun f₁ (lift_succ i) = lift_fun f₂ (lift_succ i), from congr_fun Peq _,
|
||||||
begin revert Peqi, rewrite [*lift_fun_eq], apply lift_succ_inj end)
|
begin revert Peqi, rewrite [*lift_fun_eq], apply lift_succ_inj end)
|
||||||
|
|
||||||
|
lemma lower_inj_apply {f Pinj Pmax} (i : fin n) :
|
||||||
|
val (lower_inj f Pinj Pmax i) = val (f (lift_succ i)) :=
|
||||||
|
by rewrite [↑lower_inj]
|
||||||
|
|
||||||
end lift_lower
|
end lift_lower
|
||||||
|
|
||||||
section madd
|
section madd
|
||||||
|
@ -197,6 +198,42 @@ mk ((i + j) mod (succ n)) (mod_lt _ !zero_lt_succ)
|
||||||
lemma val_madd : ∀ i j : fin (succ n), val (madd i j) = (i + j) mod (succ n)
|
lemma val_madd : ∀ i j : fin (succ n), val (madd i j) = (i + j) mod (succ n)
|
||||||
| (mk iv ilt) (mk jv jlt) := by rewrite [val_mk]
|
| (mk iv ilt) (mk jv jlt) := by rewrite [val_mk]
|
||||||
|
|
||||||
|
lemma madd_inj : ∀ {i : fin (succ n)}, injective (madd i)
|
||||||
|
| (mk iv ilt) :=
|
||||||
|
take j₁ j₂, fin.destruct j₁ (fin.destruct j₂ (λ jv₁ jlt₁ jv₂ jlt₂, begin
|
||||||
|
rewrite [↑madd, -eq_iff_veq],
|
||||||
|
intro Peq, congruence,
|
||||||
|
rewrite [-(mod_eq_of_lt jlt₁), -(mod_eq_of_lt jlt₂)],
|
||||||
|
apply mod_eq_mod_of_add_mod_eq_add_mod_left Peq
|
||||||
|
end))
|
||||||
|
|
||||||
|
lemma val_mod : ∀ i : fin (succ n), (val i) mod (succ n) = val i
|
||||||
|
| (mk iv ilt) := by rewrite [*val_mk, mod_eq_of_lt ilt]
|
||||||
|
|
||||||
|
definition minv : ∀ i : fin (succ n), fin (succ n)
|
||||||
|
| (mk iv ilt) := mk ((succ n - iv) mod succ n) (mod_lt _ !zero_lt_succ)
|
||||||
|
|
||||||
|
lemma madd_comm (i j : fin (succ n)) : madd i j = madd j i :=
|
||||||
|
by apply eq_of_veq; rewrite [*val_madd, add.comm (val i)]
|
||||||
|
|
||||||
|
lemma zero_madd (i : fin (succ n)) : madd (zero n) i = i :=
|
||||||
|
by apply eq_of_veq; rewrite [val_madd, ↑zero, nat.zero_add, mod_eq_of_lt (is_lt i)]
|
||||||
|
|
||||||
|
lemma madd_zero (i : fin (succ n)) : madd i (zero n) = i :=
|
||||||
|
!madd_comm ▸ zero_madd i
|
||||||
|
|
||||||
|
lemma madd_assoc (i j k : fin (succ n)) : madd (madd i j) k = madd i (madd j k) :=
|
||||||
|
by apply eq_of_veq; rewrite [*val_madd, mod_add_mod, add_mod_mod, add.assoc (val i)]
|
||||||
|
|
||||||
|
lemma madd_left_inv : ∀ i : fin (succ n), madd (minv i) i = zero n
|
||||||
|
| (mk iv ilt) := eq_of_veq (by
|
||||||
|
rewrite [val_madd, ↑minv, ↑zero, mod_add_mod, sub_add_cancel (le_of_lt ilt), mod_self])
|
||||||
|
|
||||||
|
open algebra
|
||||||
|
|
||||||
|
definition madd_is_comm_group [instance] : add_comm_group (fin (succ n)) :=
|
||||||
|
add_comm_group.mk madd madd_assoc (zero n) zero_madd madd_zero minv madd_left_inv madd_comm
|
||||||
|
|
||||||
end madd
|
end madd
|
||||||
|
|
||||||
definition pred : fin n → fin n
|
definition pred : fin n → fin n
|
||||||
|
|
Loading…
Reference in a new issue