diff --git a/library/data/stream.lean b/library/data/stream.lean index 0c083f955..f7c3ef4a5 100644 --- a/library/data/stream.lean +++ b/library/data/stream.lean @@ -84,7 +84,7 @@ exists.intro 0 rfl theorem mem_cons_of_mem {a : A} {s : stream A} (b : A) : a ∈ s → a ∈ b :: s := assume ains, obtain n (h : a = nth n s), from ains, -exists.intro (succ n) (by rewrite [nth_succ, tail_cons, h]; esimp) +exists.intro (succ n) (by rewrite [nth_succ, tail_cons, h]) theorem eq_or_mem_of_mem_cons {a b : A} {s : stream A} : a ∈ b::s → a = b ∨ a ∈ s := assume ainbs, obtain n (h : a = nth n (b::s)), from ainbs, @@ -129,7 +129,7 @@ rfl theorem mem_map {a : A} {s : stream A} : a ∈ s → f a ∈ map f s := assume ains, obtain n (h : a = nth n s), from ains, -exists.intro n (by rewrite [nth_map, h]; esimp) +exists.intro n (by rewrite [nth_map, h]) end map section zip @@ -330,12 +330,12 @@ theorem nth_interleave_right : ∀ (n : nat) (s₁ s₂ : stream A), nth (2*n+1) end theorem mem_interleave_left {a : A} {s₁ : stream A} (s₂ : stream A) : a ∈ s₁ → a ∈ s₁ ⋈ s₂ := -assume ains₁, obtain n (h : a = nth n s₁), from ains₁, -exists.intro (2*n) (by rewrite [h, nth_interleave_left]; esimp) +assume ains₁, obtain n h, from ains₁, +exists.intro (2*n) (by rewrite [h, nth_interleave_left]) theorem mem_interleave_right {a : A} {s₁ : stream A} (s₂ : stream A) : a ∈ s₂ → a ∈ s₁ ⋈ s₂ := -assume ains₂, obtain n (h : a = nth n s₂), from ains₂, -exists.intro (2*n+1) (by rewrite [h, nth_interleave_right]; esimp) +assume ains₂, obtain n h, from ains₂, +exists.intro (2*n+1) (by rewrite [h, nth_interleave_right]) definition even (s : stream A) : stream A := corec @@ -371,8 +371,7 @@ eq_of_bisim constructor, {reflexivity}, {existsi (tail s₂), - rewrite [interleave_eq, even_cons_cons, tail_cons], - apply rfl} + rewrite [interleave_eq, even_cons_cons, tail_cons]} end) (exists.intro s₂ rfl) @@ -399,12 +398,12 @@ theorem nth_odd : ∀ (n : nat) (s : stream A), nth n (odd s) = nth (2*n + 1) s λ n s, by rewrite [odd_eq, nth_even] theorem mem_of_mem_even (a : A) (s : stream A) : a ∈ even s → a ∈ s := -assume aines, obtain n (h : a = nth n (even s)), from aines, -exists.intro (2*n) (by rewrite [h, nth_even]; esimp) +assume aines, obtain n h, from aines, +exists.intro (2*n) (by rewrite [h, nth_even]) theorem mem_of_mem_odd (a : A) (s : stream A) : a ∈ odd s → a ∈ s := -assume ainos, obtain n (h : a = nth n (odd s)), from ainos, -exists.intro (2*n+1) (by rewrite [h, nth_odd]; esimp) +assume ainos, obtain n h, from ainos, +exists.intro (2*n+1) (by rewrite [h, nth_odd]) open list definition append : list A → stream A → stream A diff --git a/src/library/tactic/relation_tactics.cpp b/src/library/tactic/relation_tactics.cpp index 39d7476e4..2e2cca801 100644 --- a/src/library/tactic/relation_tactics.cpp +++ b/src/library/tactic/relation_tactics.cpp @@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ +#include "kernel/instantiate.h" #include "library/relation_manager.h" #include "library/explicit.h" #include "library/placeholder.h" @@ -21,7 +22,7 @@ static optional get_goal_op(proof_state const & s, bool no_meta = false) { goal const & g = head(gs); if (no_meta && has_metavar(g.get_type())) return optional(); - expr const & op = get_app_fn(g.get_type()); + expr op = get_app_fn(head_beta_reduce(g.get_type())); if (is_constant(op)) return optional(const_name(op)); else diff --git a/tests/lean/run/refl_beta.lean b/tests/lean/run/refl_beta.lean new file mode 100644 index 000000000..aafb895b8 --- /dev/null +++ b/tests/lean/run/refl_beta.lean @@ -0,0 +1,13 @@ +import data.stream +open nat + +namespace stream +variable A : Type + +set_option pp.beta false + +theorem mem_of_mem_odd₂ (a : A) (s : stream A) : a ∈ odd s → a ∈ s := +assume ainos, obtain n (h : a = nth n (odd s)), from ainos, +exists.intro (2*n+1) (by rewrite [h, nth_odd]) + +end stream diff --git a/tests/lean/run/rewrite_with_beta.lean b/tests/lean/run/rewrite_with_beta.lean index 4a04ce679..b64f34981 100644 --- a/tests/lean/run/rewrite_with_beta.lean +++ b/tests/lean/run/rewrite_with_beta.lean @@ -6,6 +6,6 @@ variable A : Type theorem mem_cons_of_mem₂ {a : A} {s : stream A} (b : A) : a ∈ s → a ∈ b :: s := assume ains, obtain n h, from ains, -exists.intro (succ n) begin rewrite [nth_succ, tail_cons, h], esimp end +exists.intro (succ n) begin rewrite [nth_succ, tail_cons, h] end end stream