feat(hott): the complex hopf fibration S3 to S2
This commit is contained in:
parent
d53320cb0f
commit
89296ec52a
1 changed files with 39 additions and 0 deletions
39
hott/homotopy/complex_hopf.hlean
Normal file
39
hott/homotopy/complex_hopf.hlean
Normal file
|
@ -0,0 +1,39 @@
|
|||
/-
|
||||
Copyright (c) 2016 Ulrik Buchholtz and Egbert Rijke. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Ulrik Buchholtz, Egbert Rijke
|
||||
|
||||
The H-space structure on S¹ and the complex Hopf fibration
|
||||
(the standard one).
|
||||
-/
|
||||
|
||||
import .hopf .circle
|
||||
|
||||
open eq equiv is_equiv circle is_conn trunc is_trunc sphere_index sphere susp
|
||||
|
||||
namespace hopf
|
||||
|
||||
definition circle_h_space [instance] : h_space S¹ :=
|
||||
⦃ h_space, one := base, mul := circle_mul,
|
||||
one_mul := circle_base_mul, mul_one := circle_mul_base ⦄
|
||||
|
||||
definition circle_assoc (x y z : S¹) : (x * y) * z = x * (y * z) :=
|
||||
begin
|
||||
induction x,
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover, induction y,
|
||||
{ exact natural_square_tr
|
||||
(λa : S¹, ap (λb : S¹, b * z) (circle_mul_base a))
|
||||
loop },
|
||||
{ apply is_prop.elimo, apply is_trunc_square } }
|
||||
end
|
||||
|
||||
open sphere.ops function
|
||||
|
||||
definition complex_hopf : S 3 → S 2 :=
|
||||
begin
|
||||
intro x, apply @sigma.pr1 (susp S¹) (hopf S¹),
|
||||
apply inv (hopf.total S¹), apply inv (join.spheres 1 1), exact x
|
||||
end
|
||||
|
||||
end hopf
|
Loading…
Reference in a new issue