diff --git a/library/data/examples/vector.lean b/library/data/examples/vector.lean index 6f7ef484a..b49b163c1 100644 --- a/library/data/examples/vector.lean +++ b/library/data/examples/vector.lean @@ -339,6 +339,6 @@ namespace vector | (mk f g l r) n := mk (map f) (map g) begin intros, rewrite [map_map, id_of_left_inverse l, map_id], reflexivity end - begin intros, rewrite [map_map, id_of_righ_inverse r, map_id], reflexivity end + begin intros, rewrite [map_map, id_of_right_inverse r, map_id], reflexivity end end end vector diff --git a/library/data/list/comb.lean b/library/data/list/comb.lean index 6aaf24d02..7db7cb680 100644 --- a/library/data/list/comb.lean +++ b/library/data/list/comb.lean @@ -563,7 +563,7 @@ definition list_equiv_of_equiv {A B : Type} : A ≃ B → list A ≃ list B | (mk f g l r) := mk (map f) (map g) begin intros, rewrite [map_map, id_of_left_inverse l, map_id], try reflexivity end - begin intros, rewrite [map_map, id_of_righ_inverse r, map_id], try reflexivity end + begin intros, rewrite [map_map, id_of_right_inverse r, map_id], try reflexivity end private definition to_nat : list nat → nat | [] := 0 diff --git a/library/data/stream.lean b/library/data/stream.lean index ca616b1ac..4638c89b0 100644 --- a/library/data/stream.lean +++ b/library/data/stream.lean @@ -622,7 +622,7 @@ lemma stream_equiv_of_equiv {A B : Type} : A ≃ B → stream A ≃ stream B | (mk f g l r) := mk (map f) (map g) begin intros, rewrite [map_map, id_of_left_inverse l, map_id] end - begin intros, rewrite [map_map, id_of_righ_inverse r, map_id] end + begin intros, rewrite [map_map, id_of_right_inverse r, map_id] end end definition lex (rel : A → A → Prop) (s₁ s₂ : stream A) : Prop := diff --git a/library/init/function.lean b/library/init/function.lean index dff86273b..d8acd33dd 100644 --- a/library/init/function.lean +++ b/library/init/function.lean @@ -105,7 +105,7 @@ definition has_left_inverse (f : A → B) : Prop := ∃ finv : B → A, left_inv -- g is a right inverse to f definition right_inverse (g : B → A) (f : A → B) : Prop := left_inverse f g -definition id_of_righ_inverse {g : B → A} {f : A → B} : right_inverse g f → f ∘ g = id := +definition id_of_right_inverse {g : B → A} {f : A → B} : right_inverse g f → f ∘ g = id := assume h, funext h definition has_right_inverse (f : A → B) : Prop := ∃ finv : B → A, right_inverse finv f