fix(frontends/lean/pp): pretty printer was ignoring notation decls in the local scope

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-18 18:00:37 -08:00
parent 79fa6e4940
commit 8cfe5cf9ed
2 changed files with 36 additions and 15 deletions

View file

@ -1,11 +1,11 @@
Push
Theorem ReflIf (A : Type)
(R : A -> A -> Bool)
(Symmetry : Pi x y, R x y -> R y x)
(Transitivity : Pi x y z, R x y -> R y z -> R x z)
(Linked : Pi x, exists y, R x y)
(R : A → A → Bool)
(Symmetry : Π x y, R x y → R y x)
(Transitivity : Π x y z, R x y → R y z → R x z)
(Linked : Π x, ∃ y, R x y)
:
Pi x, R x x :=
Π x, R x x :=
fun x, ExistsElim (Linked x)
(fun (w : A) (H : R x w),
let L1 : R w x := Symmetry x w H
@ -14,29 +14,49 @@ Pop
Push
(*
Same example but using forall instead of Pi and => instead of ->
Same example but using ∀ instead of Π and ⇒ instead of →
*)
Theorem ReflIf (A : Type)
(R : A -> A -> Bool)
(Symmetry : forall x y, R x y => R y x)
(Transitivity : forall x y z, R x y => R y z => R x z)
(Linked : forall x, exists y, R x y)
(R : A → A → Bool)
(Symmetry : ∀ x y, R x y ⇒ R y x)
(Transitivity : ∀ x y z, R x y ⇒ R y z ⇒ R x z)
(Linked : ∀ x, ∃ y, R x y)
:
forall x, R x x :=
x, R x x :=
ForallIntro (fun x,
ExistsElim (ForallElim Linked x)
(fun (w : A) (H : R x w),
let L1 : R w x := (MP (ForallElim (ForallElim Symmetry x) w) H)
in (MP (MP (ForallElim (ForallElim (ForallElim Transitivity x) w) x) H) L1)))
(* We can make the previous example less verbose by using custom notation *)
Infixl 50 ! : ForallElim
Infixl 30 << : MP
Theorem ReflIf2 (A : Type)
(R : A → A → Bool)
(Symmetry : ∀ x y, R x y ⇒ R y x)
(Transitivity : ∀ x y z, R x y ⇒ R y z ⇒ R x z)
(Linked : ∀ x, ∃ y, R x y)
:
∀ x, R x x :=
ForallIntro (fun x,
ExistsElim (Linked ! x)
(fun (w : A) (H : R x w),
let L1 : R w x := Symmetry ! x ! w << H
in Transitivity ! x ! w ! x << H << L1))
Show Environment 1
Pop
Scope
(* Same example again. *)
Variable A : Type
Variable R : A -> A -> Bool
Axiom Symmetry {x y : A} : R x y -> R y x
Axiom Transitivity {x y z : A} : R x y -> R y z -> R x z
Axiom Linked (x : A) : exists y, R x y
Variable R : A → A → Bool
Axiom Symmetry {x y : A} : R x y R y x
Axiom Transitivity {x y z : A} : R x y → R y z → R x z
Axiom Linked (x : A) : y, R x y
Theorem ReflIf (x : A) : R x x :=
ExistsElim (Linked x) (fun (w : A) (H : R x w),

View file

@ -2085,6 +2085,7 @@ class parser::imp {
m_env = env;
m_elaborator.reset(env);
m_type_inferer.reset(env);
m_io_state.set_formatter(mk_pp_formatter(env));
}
void parse_scope() {