refactor(library/theories/group_theory/action): improve compilation time
This commit is contained in:
parent
44518fcab1
commit
8dc2246a83
1 changed files with 35 additions and 39 deletions
|
@ -117,12 +117,15 @@ variables {hom : G → perm S} {H : finset G} {a : S}
|
||||||
variable [Hom : is_hom_class hom]
|
variable [Hom : is_hom_class hom]
|
||||||
include Hom
|
include Hom
|
||||||
|
|
||||||
|
lemma perm_f_mul (f g : G): perm.f ((hom f) * (hom g)) a = ((hom f) ∘ (hom g)) a :=
|
||||||
|
rfl
|
||||||
|
|
||||||
lemma stab_lmul {f g : G} : g ∈ stab hom H a → hom (f*g) a = hom f a :=
|
lemma stab_lmul {f g : G} : g ∈ stab hom H a → hom (f*g) a = hom f a :=
|
||||||
assume Pgstab,
|
assume Pgstab,
|
||||||
assert Pg : hom g a = a, from of_mem_filter Pgstab, calc
|
assert hom g a = a, from of_mem_filter Pgstab, calc
|
||||||
hom (f*g) a = perm.f ((hom f) * (hom g)) a : is_hom hom
|
hom (f*g) a = perm.f ((hom f) * (hom g)) a : is_hom hom
|
||||||
... = ((hom f) ∘ (hom g)) a : rfl
|
... = ((hom f) ∘ (hom g)) a : by rewrite perm_f_mul
|
||||||
... = (hom f) a : Pg
|
... = (hom f) a : by unfold compose; rewrite this
|
||||||
|
|
||||||
lemma stab_subset : stab hom H a ⊆ H :=
|
lemma stab_subset : stab hom H a ⊆ H :=
|
||||||
begin
|
begin
|
||||||
|
@ -130,15 +133,13 @@ lemma stab_subset : stab hom H a ⊆ H :=
|
||||||
end
|
end
|
||||||
|
|
||||||
lemma reverse_move {h g : G} : g ∈ moverset hom H a (hom h a) → hom (h⁻¹*g) a = a :=
|
lemma reverse_move {h g : G} : g ∈ moverset hom H a (hom h a) → hom (h⁻¹*g) a = a :=
|
||||||
assume Pg,
|
assume Pg,
|
||||||
assert Pga : hom g a = hom h a, from of_mem_filter Pg, calc
|
assert hom g a = hom h a, from of_mem_filter Pg, calc
|
||||||
hom (h⁻¹*g) a = perm.f ((hom h⁻¹) * (hom g)) a : is_hom hom
|
hom (h⁻¹*g) a = perm.f ((hom h⁻¹) * (hom g)) a : by rewrite (is_hom hom)
|
||||||
... = ((hom h⁻¹) ∘ hom g) a : rfl
|
... = ((hom h⁻¹) ∘ hom g) a : by rewrite perm_f_mul
|
||||||
... = ((hom h⁻¹) ∘ hom h) a : {Pga}
|
... = perm.f ((hom h)⁻¹ * hom h) a : by unfold compose; rewrite [this, perm_f_mul, hom_map_inv hom h]
|
||||||
... = perm.f ((hom h⁻¹) * hom h) a : rfl
|
... = (1 : perm S) a : by rewrite (mul.left_inv (hom h))
|
||||||
... = perm.f ((hom h)⁻¹ * hom h) a : hom_map_inv hom h
|
... = a : by esimp
|
||||||
... = (1 : perm S) a : mul.left_inv (hom h)
|
|
||||||
... = a : rfl
|
|
||||||
|
|
||||||
lemma moverset_inj_on_orbit : set.inj_on (moverset hom H a) (ts (orbit hom H a)) :=
|
lemma moverset_inj_on_orbit : set.inj_on (moverset hom H a) (ts (orbit hom H a)) :=
|
||||||
take b1 b2,
|
take b1 b2,
|
||||||
|
@ -184,11 +185,11 @@ lemma subg_stab_has_one : 1 ∈ stab hom H a :=
|
||||||
lemma subg_stab_has_inv : finset_has_inv (stab hom H a) :=
|
lemma subg_stab_has_inv : finset_has_inv (stab hom H a) :=
|
||||||
take f, assume Pfstab, assert Pf : hom f a = a, from of_mem_filter Pfstab,
|
take f, assume Pfstab, assert Pf : hom f a = a, from of_mem_filter Pfstab,
|
||||||
assert Pfinv : hom f⁻¹ a = a, from calc
|
assert Pfinv : hom f⁻¹ a = a, from calc
|
||||||
hom f⁻¹ a = hom f⁻¹ ((hom f) a) : Pf
|
hom f⁻¹ a = hom f⁻¹ ((hom f) a) : by rewrite Pf
|
||||||
... = perm.f ((hom f⁻¹) * (hom f)) a : rfl
|
... = perm.f ((hom f⁻¹) * (hom f)) a : by rewrite perm_f_mul
|
||||||
... = hom (f⁻¹ * f) a : is_hom hom
|
... = hom (f⁻¹ * f) a : by rewrite (is_hom hom)
|
||||||
... = hom 1 a : mul.left_inv
|
... = hom 1 a : by rewrite mul.left_inv
|
||||||
... = (1 : perm S) a : hom_map_one hom,
|
... = (1 : perm S) a : by rewrite (hom_map_one hom),
|
||||||
assert PfinvinH : f⁻¹ ∈ H, from finsubg_has_inv H (mem_of_mem_filter Pfstab),
|
assert PfinvinH : f⁻¹ ∈ H, from finsubg_has_inv H (mem_of_mem_filter Pfstab),
|
||||||
mem_filter_of_mem PfinvinH Pfinv
|
mem_filter_of_mem PfinvinH Pfinv
|
||||||
|
|
||||||
|
@ -276,20 +277,15 @@ obtain g PginH Pgcb, from exists_of_orbit Pbinc,
|
||||||
orbit_of_exists (exists.intro (h*g) (and.intro
|
orbit_of_exists (exists.intro (h*g) (and.intro
|
||||||
(finsubg_mul_closed H PhinH PginH)
|
(finsubg_mul_closed H PhinH PginH)
|
||||||
(calc hom (h*g) c = perm.f ((hom h) * (hom g)) c : is_hom hom
|
(calc hom (h*g) c = perm.f ((hom h) * (hom g)) c : is_hom hom
|
||||||
... = ((hom h) ∘ (hom g)) c : rfl
|
... = ((hom h) ∘ (hom g)) c : by rewrite perm_f_mul
|
||||||
... = (hom h) b : Pgcb
|
... = (hom h) b : Pgcb
|
||||||
... = a : Phba)))
|
... = a : Phba)))
|
||||||
|
|
||||||
lemma in_orbit_symm {a b : S} : a ∈ orbit hom H b → b ∈ orbit hom H a :=
|
lemma in_orbit_symm {a b : S} : a ∈ orbit hom H b → b ∈ orbit hom H a :=
|
||||||
assume Painb, obtain h PhinH Phba, from exists_of_orbit Painb,
|
assume Painb, obtain h PhinH Phba, from exists_of_orbit Painb,
|
||||||
assert Phinvab : perm.f (hom h)⁻¹ a = b, from
|
assert perm.f (hom h)⁻¹ a = b, by rewrite [-Phba, -perm_f_mul, mul.left_inv],
|
||||||
calc perm.f (hom h)⁻¹ a = perm.f (hom h)⁻¹ ((hom h) b) : Phba
|
assert (hom h⁻¹) a = b, by rewrite [hom_map_inv, this],
|
||||||
... = perm.f ((hom h)⁻¹ * (hom h)) b : rfl
|
orbit_of_exists (exists.intro h⁻¹ (and.intro (finsubg_has_inv H PhinH) this))
|
||||||
... = perm.f (1 : perm S) b : mul.left_inv,
|
|
||||||
orbit_of_exists (exists.intro h⁻¹ (and.intro
|
|
||||||
(finsubg_has_inv H PhinH)
|
|
||||||
(calc (hom h⁻¹) a = perm.f (hom h)⁻¹ a : hom_map_inv hom h
|
|
||||||
... = b : Phinvab)))
|
|
||||||
|
|
||||||
lemma orbit_is_partition : is_partition (orbit hom H) :=
|
lemma orbit_is_partition : is_partition (orbit hom H) :=
|
||||||
take a b, propext (iff.intro
|
take a b, propext (iff.intro
|
||||||
|
@ -373,10 +369,10 @@ calc Sum _ _ = Sum (fixed_point_orbits hom H) (λ x, 1) : Sum_ext (take c Pin, o
|
||||||
|
|
||||||
local attribute nat.comm_semiring [instance]
|
local attribute nat.comm_semiring [instance]
|
||||||
lemma orbit_class_equation' : card S = card (fixed_points hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card :=
|
lemma orbit_class_equation' : card S = card (fixed_points hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card :=
|
||||||
calc card S = Sum (orbits hom H) finset.card : orbit_class_equation
|
calc card S = Sum (orbits hom H) finset.card : orbit_class_equation
|
||||||
... = Sum (fixed_point_orbits hom H) finset.card + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : Sum_binary_union
|
... = Sum (fixed_point_orbits hom H) finset.card + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : Sum_binary_union
|
||||||
... = card (fixed_point_orbits hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : {card_fixed_point_orbits}
|
... = card (fixed_point_orbits hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : by rewrite -card_fixed_point_orbits
|
||||||
... = card (fixed_points hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : card_fixed_point_orbits_eq
|
... = card (fixed_points hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : by rewrite card_fixed_point_orbits_eq
|
||||||
|
|
||||||
end orbit_partition
|
end orbit_partition
|
||||||
|
|
||||||
|
@ -559,21 +555,21 @@ ext (take i, iff.intro
|
||||||
end))
|
end))
|
||||||
|
|
||||||
lemma card_orbit_max : card (orbit (@id (perm (fin (succ n)))) univ maxi) = succ n :=
|
lemma card_orbit_max : card (orbit (@id (perm (fin (succ n)))) univ maxi) = succ n :=
|
||||||
calc card (orbit (@id (perm (fin (succ n)))) univ maxi) = card univ : {orbit_max}
|
calc card (orbit (@id (perm (fin (succ n)))) univ maxi) = card univ : by rewrite orbit_max
|
||||||
... = succ n : card_fin (succ n)
|
... = succ n : card_fin (succ n)
|
||||||
|
|
||||||
open fintype
|
open fintype
|
||||||
|
|
||||||
lemma card_lift_to_stab : card (stab (@id (perm (fin (succ n)))) univ maxi) = card (perm (fin n)) :=
|
lemma card_lift_to_stab : card (stab (@id (perm (fin (succ n)))) univ maxi) = card (perm (fin n)) :=
|
||||||
calc finset.card (stab (@id (perm (fin (succ n)))) univ maxi)
|
calc finset.card (stab (@id (perm (fin (succ n)))) univ maxi)
|
||||||
= finset.card (image (@lift_perm n) univ) : {eq.symm lift_to_stab}
|
= finset.card (image (@lift_perm n) univ) : by rewrite lift_to_stab
|
||||||
... = card univ : card_image_eq_of_inj_on lift_perm_inj_on_univ
|
... = card univ : by rewrite (card_image_eq_of_inj_on lift_perm_inj_on_univ)
|
||||||
|
|
||||||
lemma card_perm_step : card (perm (fin (succ n))) = (succ n) * card (perm (fin n)) :=
|
lemma card_perm_step : card (perm (fin (succ n))) = (succ n) * card (perm (fin n)) :=
|
||||||
calc card (perm (fin (succ n)))
|
calc card (perm (fin (succ n)))
|
||||||
= card (orbit id univ maxi) * card (stab id univ maxi) : orbit_stabilizer_theorem
|
= card (orbit id univ maxi) * card (stab id univ maxi) : orbit_stabilizer_theorem
|
||||||
... = (succ n) * card (stab id univ maxi) : {card_orbit_max}
|
... = (succ n) * card (stab id univ maxi) : {card_orbit_max}
|
||||||
... = (succ n) * card (perm (fin n)) : {card_lift_to_stab}
|
... = (succ n) * card (perm (fin n)) : by rewrite -card_lift_to_stab
|
||||||
|
|
||||||
end perm_fin
|
end perm_fin
|
||||||
end group
|
end group
|
||||||
|
|
Loading…
Reference in a new issue