feat(library/algebra/group_pow.lean,library/data/nat/power.lean): add generic power operation on monoids and groups

This commit is contained in:
Jeremy Avigad 2015-05-14 14:48:32 +10:00 committed by Leonardo de Moura
parent cbcaf5a48e
commit 8de6a4bb4c
4 changed files with 160 additions and 35 deletions

View file

@ -0,0 +1,136 @@
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
The power operation on monoids and groups. We separate this from group, because it depends on
nat, which in turn depends on other parts of algebra.
We have "pow a n" for natural number powers, and "ipow a i" for integer powers. The notation
a^n is used for the first, but users can locally redefine it to ipow when needed.
Note: power adopts the convention that 0^0=1.
-/
import data.nat.basic data.int.basic
namespace algebra
variables {A : Type}
/- monoid -/
section monoid
open nat
variable [s : monoid A]
include s
definition pow (a : A) : → A
| 0 := 1
| (n+1) := pow n * a
infix `^` := pow
theorem pow_zero (a : A) : a^0 = 1 := rfl
theorem pow_succ (a : A) (n : ) : a^(succ n) = a^n * a := rfl
theorem pow_succ' (a : A) : ∀n, a^(succ n) = a * a^n
| 0 := by rewrite [pow_succ, *pow_zero, one_mul, mul_one]
| (succ n) := by rewrite [pow_succ, pow_succ' at {1}, pow_succ, mul.assoc]
theorem one_pow : ∀ n : , 1^n = 1
| 0 := rfl
| (succ n) := by rewrite [pow_succ, mul_one, one_pow]
theorem pow_one (a : A) : a^1 = a := !one_mul
theorem pow_add (a : A) (m : ) : ∀ n, a^(m + n) = a^m * a^n
| 0 := by rewrite [nat.add_zero, pow_zero, mul_one]
| (succ n) := by rewrite [add_succ, *pow_succ, pow_add, mul.assoc]
theorem pow_mul (a : A) (m : ) : ∀ n, a^(m * n) = (a^m)^n
| 0 := by rewrite [nat.mul_zero, pow_zero]
| (succ n) := by rewrite [nat.mul_succ, pow_add, pow_succ, pow_mul]
theorem pow_comm (a : A) (m n : ) : a^m * a^n = a^n * a^m :=
by rewrite [-*pow_add, nat.add.comm]
end monoid
/- commutative monoid -/
section comm_monoid
open nat
variable [s : comm_monoid A]
include s
theorem mul_pow (a b : A) : ∀ n, (a * b)^n = a^n * b^n
| 0 := by rewrite [*pow_zero, mul_one]
| (succ n) := by rewrite [*pow_succ, mul_pow, *mul.assoc, mul.left_comm a]
end comm_monoid
section group
variable [s : group A]
include s
section nat
open nat
theorem inv_pow (a : A) : ∀n, (a⁻¹)^n = (a^n)⁻¹
| 0 := by rewrite [*pow_zero, inv_one]
| (succ n) := by rewrite [pow_succ, pow_succ', inv_pow, inv_mul]
theorem pow_sub (a : A) {m n : } (H : m ≥ n) : a^(m - n) = a^m * (a^n)⁻¹ :=
assert H1 : m - n + n = m, from nat.sub_add_cancel H,
have H2 : a^(m - n) * a^n = a^m, by rewrite [-pow_add, H1],
eq_mul_inv_of_mul_eq H2
theorem pow_inv_comm (a : A) : ∀m n, (a⁻¹)^m * a^n = a^n * (a⁻¹)^m
| 0 n := by rewrite [*pow_zero, one_mul, mul_one]
| m 0 := by rewrite [*pow_zero, one_mul, mul_one]
| (succ m) (succ n) := by rewrite [pow_succ at {1}, pow_succ' at {1}, pow_succ, pow_succ',
*mul.assoc, inv_mul_cancel_left, mul_inv_cancel_left, pow_inv_comm]
end nat
open int
definition ipow (a : A) : → A
| (of_nat n) := a^n
| -[n +1] := (a^(nat.succ n))⁻¹
private lemma ipow_add_aux (a : A) (m n : nat) :
ipow a ((of_nat m) + -[n +1]) = ipow a (of_nat m) * ipow a (-[n +1]) :=
or.elim (nat.lt_or_ge m (nat.succ n))
(assume H : (#nat m < nat.succ n),
assert H1 : (#nat nat.succ n - m > nat.zero), from nat.sub_pos_of_lt H,
calc
ipow a ((of_nat m) + -[n +1]) = ipow a (sub_nat_nat m (nat.succ n)) : rfl
... = ipow a (-[nat.pred (nat.sub (nat.succ n) m) +1]) : {sub_nat_nat_of_lt H}
... = (pow a (nat.succ (nat.pred (nat.sub (nat.succ n) m))))⁻¹ : rfl
... = (pow a (nat.succ n) * (pow a m)⁻¹)⁻¹ :
by rewrite [nat.succ_pred_of_pos H1, pow_sub a (nat.le_of_lt H)]
... = pow a m * (pow a (nat.succ n))⁻¹ :
by rewrite [inv_mul, inv_inv]
... = ipow a (of_nat m) * ipow a (-[n +1]) : rfl)
(assume H : (#nat m ≥ nat.succ n),
calc
ipow a ((of_nat m) + -[n +1]) = ipow a (sub_nat_nat m (nat.succ n)) : rfl
... = ipow a (#nat m - nat.succ n) : {sub_nat_nat_of_ge H}
... = pow a m * (pow a (nat.succ n))⁻¹ : pow_sub a H
... = ipow a (of_nat m) * ipow a (-[n +1]) : rfl)
theorem ipow_add (a : A) : ∀i j : int, ipow a (i + j) = ipow a i * ipow a j
| (of_nat m) (of_nat n) := !pow_add
| (of_nat m) -[n +1] := !ipow_add_aux
| -[ m+1] (of_nat n) := by rewrite [int.add.comm, ipow_add_aux, ↑ipow, -*inv_pow, pow_inv_comm]
| -[ m+1] -[n+1] :=
calc
ipow a (-[ m+1] + -[n+1]) = (a^(#nat nat.succ m + nat.succ n))⁻¹ : rfl
... = (a^(nat.succ m))⁻¹ * (a^(nat.succ n))⁻¹ : by rewrite [pow_add, pow_comm, inv_mul]
... = ipow a (-[ m+1]) * ipow a (-[n+1]) : rfl
theorem ipow_comm (a : A) (i j : ) : ipow a i * ipow a j = ipow a j * ipow a i :=
by rewrite [-*ipow_add, int.add.comm]
end group
end algebra

View file

@ -169,7 +169,7 @@ section migrate_algebra
local attribute nat.linear_ordered_semiring [instance] local attribute nat.linear_ordered_semiring [instance]
migrate from algebra with nat migrate from algebra with nat
replacing has_le.ge → ge, has_lt.gt → gt replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt
hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos, hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos,
add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le, add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le,
le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg, le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg,

View file

@ -1,62 +1,50 @@
/- /-
Copyright (c) 2015 Microsoft Corporation. All rights reserved. Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
Module: data.nat.power The power function on the natural numbers.
Authors: Leonardo de Moura
Power
-/ -/
import data.nat.basic data.nat.div import data.nat.basic data.nat.order data.nat.div algebra.group_pow
namespace nat namespace nat
definition pow : nat → nat → nat section migrate_algebra
| a 0 := 1 open [classes] algebra
| a (succ b) := a * pow a b local attribute nat.comm_semiring [instance]
local attribute nat.linear_ordered_semiring [instance]
theorem pow_zero (a : nat) : pow a 0 = 1 := definition pow (a : ) (n : ) : := algebra.pow a n
rfl migrate from algebra with nat
replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, pow → pow
hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos,
add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le,
le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg,
lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right
end migrate_algebra
theorem pow_succ (a b : nat) : pow a (succ b) = a * pow a b := -- TODO: eventually this will be subsumed under the algebraic theorems
rfl
theorem one_pow : ∀ (a : nat), pow 1 a = 1
| 0 := rfl
| (succ a) := by rewrite [pow_succ, one_pow]
theorem pow_one : ∀ {a : nat}, a ≠ 0 → pow a 1 = a
| 0 h := absurd rfl h
| (succ a) h := by rewrite [pow_succ, pow_zero, mul_one]
theorem zero_pow : ∀ {a : nat}, a ≠ 0 → pow 0 a = 0
| 0 h := absurd rfl h
| (succ a) h := by rewrite [pow_succ, zero_mul]
theorem pow_add : ∀ (a b c : nat), pow a (b + c) = pow a b * pow a c
| a b 0 := by rewrite [add_zero, pow_zero, mul_one]
| a b (succ c) := by rewrite [add_succ, *pow_succ, pow_add a b c, mul.left_comm]
theorem mul_self_eq_pow_2 (a : nat) : a * a = pow a 2 := theorem mul_self_eq_pow_2 (a : nat) : a * a = pow a 2 :=
show a * a = pow a (succ (succ zero)), from show a * a = pow a (succ (succ zero)), from
by rewrite [*pow_succ, *pow_zero, mul_one] by rewrite [*pow_succ, *pow_zero, one_mul]
theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b = c theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b = c
| a 0 0 h₁ h₂ := rfl | a 0 0 h₁ h₂ := rfl
| a (succ b) 0 h₁ h₂ := | a (succ b) 0 h₁ h₂ :=
assert aeq1 : a = 1, by rewrite [pow_succ at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂), assert aeq1 : a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂),
assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁, assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁,
absurd h₁ !lt.irrefl absurd h₁ !lt.irrefl
| a 0 (succ c) h₁ h₂ := | a 0 (succ c) h₁ h₂ :=
assert aeq1 : a = 1, by rewrite [pow_succ at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right (eq.symm h₂)), assert aeq1 : a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right (eq.symm h₂)),
assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁, assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁,
absurd h₁ !lt.irrefl absurd h₁ !lt.irrefl
| a (succ b) (succ c) h₁ h₂ := | a (succ b) (succ c) h₁ h₂ :=
assert ane0 : a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial), assert ane0 : a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial),
assert beqc : pow a b = pow a c, by rewrite [*pow_succ at h₂]; exact (mul_cancel_left_of_ne_zero ane0 h₂), assert beqc : pow a b = pow a c, by rewrite [*pow_succ' at h₂]; exact (mul_cancel_left_of_ne_zero ane0 h₂),
by rewrite [pow_cancel_left h₁ beqc] by rewrite [pow_cancel_left h₁ beqc]
theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → pow a (succ b) div a = pow a b theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → pow a (succ b) div a = pow a b
| a 0 h := by rewrite [pow_succ, pow_zero, mul_one, div_self (pos_of_ne_zero h)] | a 0 h := by rewrite [pow_succ', pow_zero, mul_one, div_self (pos_of_ne_zero h)]
| a (succ b) h := by rewrite [pow_succ, mul_div_cancel_left _ (pos_of_ne_zero h)] | a (succ b) h := by rewrite [pow_succ', mul_div_cancel_left _ (pos_of_ne_zero h)]
end nat end nat

View file

@ -68,6 +68,7 @@ reserve infixl `div`:70
reserve infixl `mod`:70 reserve infixl `mod`:70
reserve infixl `/`:70 reserve infixl `/`:70
reserve prefix `-`:100 reserve prefix `-`:100
reserve infix `^`:80
reserve infix `<=`:50 reserve infix `<=`:50
reserve infix `≤`:50 reserve infix `≤`:50