feat(library/tactic/apply_tactic): improved parametric apply_tactic

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-24 22:40:34 -08:00
parent c87e965f86
commit 8e45064f25
7 changed files with 238 additions and 132 deletions

View file

@ -17,6 +17,7 @@ Author: Leonardo de Moura
#include <tuple>
#include <vector>
#include <limits>
#include "util/flet.h"
#include "util/luaref.h"
#include "util/scoped_map.h"
#include "util/exception.h"
@ -167,6 +168,11 @@ class parser::imp {
pos_info m_last_cmd_pos;
pos_info m_last_script_pos;
tactic_hints m_tactic_hints;
// If true then return error when parsing identifiers and it is not local or global.
// We set this flag off when parsing tactics. The apply_tac may reference
// a hypothesis in the proof state. This hypothesis is not visible until we
// execute the tactic.
bool m_check_identifiers;
script_state * m_script_state;
@ -875,6 +881,8 @@ class parser::imp {
} else {
throw parser_error(sstream() << "invalid object reference, object '" << id << "' is not an expression.", p);
}
} else if (!m_check_identifiers) {
return mk_constant(id);
} else {
throw parser_error(sstream() << "unknown identifier '" << id << "'", p);
}
@ -1389,6 +1397,7 @@ class parser::imp {
});
} else if (curr_is_lparen()) {
next();
flet<bool> set(m_check_identifiers, false);
expr pr = parse_expr();
check_rparen_next("invalid apply command, ')' expected");
return ::lean::apply_tactic(pr);
@ -2440,6 +2449,7 @@ public:
m_elaborator(env),
m_use_exceptions(use_exceptions),
m_interactive(interactive) {
m_check_identifiers = true;
m_script_state = S;
if (m_script_state) {
m_script_state->apply([&](lua_State * L) {

View file

@ -6,117 +6,45 @@ Author: Leonardo de Moura
*/
#include <utility>
#include <algorithm>
#include "util/sstream.h"
#include "kernel/environment.h"
#include "kernel/instantiate.h"
#include "kernel/type_checker.h"
#include "kernel/abstract.h"
#include "kernel/replace_visitor.h"
#include "library/fo_unify.h"
#include "library/placeholder.h"
#include "library/kernel_bindings.h"
#include "library/elaborator/elaborator.h"
#include "library/tactic/goal.h"
#include "library/tactic/proof_builder.h"
#include "library/tactic/proof_state.h"
#include "library/tactic/tactic.h"
#include "library/tactic/apply_tactic.h"
#include "kernel/formatter.h"
namespace lean {
static name g_tmp_mvar_name = name::mk_internal_unique_name();
static optional<proof_state> apply_tactic(ro_environment const & env, proof_state const & s,
expr const & th, expr const & th_type, bool all) {
precision prec = s.get_precision();
if (prec != precision::Precise && prec != precision::Over) {
// it is pointless to apply this tactic, since it will produce UnderOver
return none_proof_state();
}
unsigned num = 0;
expr th_type_c = th_type;
while (is_pi(th_type_c)) {
num++;
th_type_c = abst_body(th_type_c);
}
buffer<expr> mvars;
for (unsigned i = 0; i < num; i++)
mvars.push_back(mk_metavar(name(g_tmp_mvar_name, i)));
metavar_env new_menv = s.get_menv().copy();
th_type_c = instantiate(th_type_c, mvars.size(), mvars.data(), new_menv);
bool found = false;
buffer<std::pair<name, goal>> new_goals_buf;
// The proof is based on an application of th.
// The proof is based on an application of a function that returns a proof.
// There are two kinds of arguments:
// 1) regular arguments computed using unification.
// 2) propositions that generate new subgoals.
typedef std::pair<name, hypotheses> proposition_arg;
// We use a pair to simulate this "union" type.
typedef list<std::pair<optional<expr>,
optional<proposition_arg>>> arg_list;
// We may solve more than one goal.
// We store the solved goals using a list of pairs
// name, args. Where the 'name' is the name of the solved goal.
type_checker checker(env);
list<std::pair<name, arg_list>> proof_info;
for (auto const & p : s.get_goals()) {
check_interrupted();
if (all || !found) {
name const & gname = p.first;
goal const & g = p.second;
expr const & c = g.get_conclusion();
optional<substitution> subst = fo_unify(th_type_c, c);
if (subst) {
found = true;
th_type_c = th_type;
arg_list l;
unsigned new_goal_idx = 1;
for (auto const & mvar : mvars) {
expr mvar_sol = apply(*subst, mvar);
if (mvar_sol != mvar) {
l = cons(mk_pair(some_expr(mvar_sol), optional<proposition_arg>()), l);
th_type_c = instantiate(abst_body(th_type_c), mvar_sol, new_menv);
} else {
expr arg_type = abst_domain(th_type_c);
if (checker.is_flex_proposition(arg_type, context(), new_menv)) {
name new_gname(gname, new_goal_idx);
new_goal_idx++;
hypotheses hs = g.get_hypotheses();
update_hypotheses_fn add_hypothesis(hs);
hypotheses extra_hs;
while (is_pi(arg_type)) {
expr d = abst_domain(arg_type);
name n = arg_to_hypothesis_name(abst_name(arg_type), d, env, context(), new_menv);
n = add_hypothesis(n, d);
extra_hs.emplace_front(n, d);
arg_type = instantiate(abst_body(arg_type), mk_constant(n, d), new_menv);
}
l = cons(mk_pair(none_expr(), some(proposition_arg(new_gname, extra_hs))), l);
new_goals_buf.emplace_back(new_gname, goal(add_hypothesis.get_hypotheses(), arg_type));
th_type_c = instantiate(abst_body(th_type_c), mk_constant(new_gname, arg_type), new_menv);
} else {
// we have to create a new metavar in menv
// since we do not have a substitution for mvar, and
// it is not a proposition
expr new_m = new_menv->mk_metavar(context(), some_expr(arg_type));
l = cons(mk_pair(some_expr(new_m), optional<proposition_arg>()), l);
th_type_c = instantiate(abst_body(th_type_c), 1, &new_m, new_menv);
}
}
}
proof_info.emplace_front(gname, l);
} else {
new_goals_buf.push_back(p);
}
} else {
new_goals_buf.push_back(p);
}
}
if (found) {
proof_builder pb = s.get_proof_builder();
proof_builder new_pb = mk_proof_builder([=](proof_map const & m, assignment const & a) -> expr {
typedef list<std::pair<optional<expr>, optional<proposition_arg>>> arg_list;
/**
\brief Return the proof builder for the apply_tactic.
It solves the goal \c gname by applying \c th_fun to the arguments \c alist.
*/
proof_builder mk_apply_tac_proof_builder(proof_builder const & pb, name const & gname, expr const & th_fun, arg_list const & alist) {
return mk_proof_builder([=](proof_map const & m, assignment const & a) -> expr {
proof_map new_m(m);
for (auto const & p1 : proof_info) {
name const & gname = p1.first;
arg_list const & l = p1.second;
buffer<expr> args;
args.push_back(th);
for (auto const & p2 : l) {
args.push_back(th_fun);
for (auto const & p2 : alist) {
optional<expr> const & arg = p2.first;
if (arg) {
// TODO(Leo): decide if we instantiate the metavars in the end or not.
@ -133,40 +61,179 @@ static optional<proof_state> apply_tactic(ro_environment const & env, proof_stat
}
std::reverse(args.begin() + 1, args.end());
new_m.insert(gname, mk_app(args));
}
return pb(new_m, a);
});
goals new_gs = to_list(new_goals_buf.begin(), new_goals_buf.end());
return some(proof_state(precision::Over, new_gs, new_menv, new_pb, s.get_cex_builder()));
}
/**
\brief Functional object for replacing placeholders with
metavariables and attaching type to constants that refer
hypotheses in the given goal.
*/
class apply_tactic_preprocessor_fn : public replace_visitor {
ro_environment const & m_env;
metavar_env const & m_menv;
hypotheses const & m_hypotheses;
protected:
expr visit_constant(expr const & e, context const & c) {
if (is_placeholder(e)) {
return m_menv->mk_metavar(c, const_type(e));
} else if (m_env->find_object(const_name(e))) {
return e;
} else {
return none_proof_state();
for (auto const & p : m_hypotheses) {
if (p.first == const_name(e))
return mk_constant(const_name(e), p.second);
}
throw exception(sstream() << "apply_tactic failed, unknown identifier '" << const_name(e) << "'");
}
}
tactic apply_tactic(expr const & th, bool all) {
public:
apply_tactic_preprocessor_fn(ro_environment const & env, metavar_env const & menv, hypotheses const & hs):
m_env(env), m_menv(menv), m_hypotheses(hs) {}
};
/**
\brief Functional object for moving the metavariable occurring in an expression to
another metavar environment.
*/
class move_metavars_fn : public replace_visitor {
name_map<expr> m_map;
metavar_env const & m_menv;
expr visit_metavar(expr const & mvar, context const &) {
name const & mvar_name = metavar_name(mvar);
auto it = m_map.find(mvar_name);
if (it == m_map.end()) {
expr r = m_menv->mk_metavar();
m_map[mvar_name] = r;
return r;
} else {
return it->second;
}
}
public:
move_metavars_fn(metavar_env const & menv):m_menv(menv) {}
};
static optional<proof_state> apply_tactic(ro_environment const & env, proof_state const & s,
expr th, optional<expr> const & th_type) {
precision prec = s.get_precision();
if ((prec != precision::Precise && prec != precision::Over) || empty(s.get_goals())) {
// it is pointless to apply this tactic, since it will produce UnderOver
return none_proof_state();
}
type_checker checker(env);
auto const & p = head(s.get_goals());
name const & gname = p.first;
goal const & g = p.second;
metavar_env new_menv = s.get_menv().copy();
expr th_type_c;
if (th_type) {
th_type_c = *th_type;
} else {
metavar_env tmp_menv;
buffer<unification_constraint> ucs;
th = apply_tactic_preprocessor_fn(env, tmp_menv, g.get_hypotheses())(th);
th_type_c = checker.check(th, context(), tmp_menv, ucs);
elaborator elb(env, tmp_menv, ucs.size(), ucs.data());
try {
metavar_env new_tmp_menv = elb.next();
th = new_tmp_menv->instantiate_metavars(th);
th_type_c = new_tmp_menv->instantiate_metavars(th_type_c);
} catch (exception & ex) {
return none_proof_state();
}
move_metavars_fn move(new_menv);
th = move(th);
th_type_c = move(th_type_c);
}
expr conclusion = th_type_c;
buffer<expr> mvars;
unsigned i = 0;
while (is_pi(conclusion)) {
expr mvar = new_menv->mk_metavar();
mvars.push_back(mvar);
conclusion = instantiate(abst_body(conclusion), mvar, new_menv);
i++;
}
optional<substitution> subst = fo_unify(conclusion, g.get_conclusion());
if (!subst) {
return none_proof_state();
}
th_type_c = apply(*subst, th_type_c);
th = apply(*subst, th);
arg_list alist;
unsigned new_goal_idx = 1;
buffer<std::pair<name, goal>> new_goals_buf;
for (auto const & mvar : mvars) {
expr mvar_subst = apply(*subst, mvar);
if (mvar_subst != mvar) {
alist = cons(mk_pair(some_expr(mvar_subst), optional<proposition_arg>()), alist);
th_type_c = instantiate(abst_body(th_type_c), mvar_subst, new_menv);
} else {
expr arg_type = abst_domain(th_type_c);
if (checker.is_flex_proposition(arg_type, context(), new_menv)) {
name new_gname(gname, new_goal_idx);
new_goal_idx++;
hypotheses hs = g.get_hypotheses();
update_hypotheses_fn add_hypothesis(hs);
hypotheses extra_hs;
while (is_pi(arg_type)) {
expr d = abst_domain(arg_type);
name n = arg_to_hypothesis_name(abst_name(arg_type), d, env, context(), new_menv);
n = add_hypothesis(n, d);
extra_hs.emplace_front(n, d);
arg_type = instantiate(abst_body(arg_type), mk_constant(n, d), new_menv);
}
alist = cons(mk_pair(none_expr(), some(proposition_arg(new_gname, extra_hs))), alist);
new_goals_buf.emplace_back(new_gname, goal(add_hypothesis.get_hypotheses(), arg_type));
th_type_c = instantiate(abst_body(th_type_c), mk_constant(new_gname, arg_type), new_menv);
} else {
// we have to create a new metavar in menv
// since we do not have a substitution for mvar, and
// it is not a proposition
/// expr new_m = new_menv->mk_metavar(context(), some_expr(arg_type));
alist = cons(mk_pair(some_expr(mvar), optional<proposition_arg>()), alist);
th_type_c = instantiate(abst_body(th_type_c), mvar, new_menv);
}
}
}
proof_builder pb = s.get_proof_builder();
proof_builder new_pb = mk_apply_tac_proof_builder(pb, gname, th, alist);
goals new_gs = to_list(new_goals_buf.begin(), new_goals_buf.end(), tail(s.get_goals()));
return some(proof_state(precision::Over, new_gs, new_menv, new_pb, s.get_cex_builder()));
}
tactic apply_tactic(expr const & th) {
return mk_tactic01([=](ro_environment const & env, io_state const &, proof_state const & s) -> optional<proof_state> {
expr th_type = type_inferer(env)(th, context(), s.get_menv().copy());
return apply_tactic(env, s, th, th_type, all);
// th may contain placeholder
// TODO(Leo)
return apply_tactic(env, s, th, none_expr());
});
}
tactic apply_tactic(name const & th_name, bool all) {
tactic apply_tactic(expr const & th, expr const & th_type) {
return mk_tactic01([=](ro_environment const & env, io_state const &, proof_state const & s) -> optional<proof_state> {
return apply_tactic(env, s, th, some_expr(th_type));
});
}
tactic apply_tactic(name const & th_name) {
return mk_tactic01([=](ro_environment const & env, io_state const &, proof_state const & s) -> optional<proof_state> {
optional<object> obj = env->find_object(th_name);
if (obj && (obj->is_theorem() || obj->is_axiom()))
return apply_tactic(env, s, mk_constant(th_name), obj->get_type(), all);
return apply_tactic(env, s, mk_constant(th_name), some_expr(obj->get_type()));
else
return none_proof_state();
});
}
int mk_apply_tactic(lua_State * L) {
int nargs = lua_gettop(L);
bool all = nargs >= 2 ? lua_toboolean(L, 2) : true;
if (is_expr(L, 1))
return push_tactic(L, apply_tactic(to_expr(L, 1), all));
return push_tactic(L, apply_tactic(to_expr(L, 1)));
else
return push_tactic(L, apply_tactic(to_name_ext(L, 1), all));
return push_tactic(L, apply_tactic(to_name_ext(L, 1)));
}
void open_apply_tactic(lua_State * L) {

View file

@ -7,7 +7,8 @@ Author: Leonardo de Moura
#pragma once
#include "library/tactic/tactic.h"
namespace lean {
tactic apply_tactic(expr const & th, bool all = true);
tactic apply_tactic(name const & th_name, bool all = true);
tactic apply_tactic(expr const & th);
tactic apply_tactic(expr const & th, expr const & th_type);
tactic apply_tactic(name const & th_name);
void open_apply_tactic(lua_State * L);
}

View file

@ -0,0 +1,7 @@
Check @Discharge
Theorem T (a b : Bool) : a => b => b => a.
apply Discharge.
apply Discharge.
apply Discharge.
assumption.
done.

View file

@ -0,0 +1,4 @@
Set: pp::colors
Set: pp::unicode
@Discharge : Π (a b : Bool), (a → b) → (a ⇒ b)
Proved: T

10
tests/lean/disjcases.lean Normal file
View file

@ -0,0 +1,10 @@
Variables a b c : Bool
Axiom H : a \/ b
Theorem T (a b : Bool) : a \/ b => b \/ a.
apply Discharge.
apply (DisjCases H).
apply Disj2.
assumption.
apply Disj1.
assumption.
done.

View file

@ -0,0 +1,7 @@
Set: pp::colors
Set: pp::unicode
Assumed: a
Assumed: b
Assumed: c
Assumed: H
Proved: T