diff --git a/library/standard/congruence.lean b/library/standard/congruence.lean new file mode 100644 index 000000000..08a6ce007 --- /dev/null +++ b/library/standard/congruence.lean @@ -0,0 +1,67 @@ +---------------------------------------------------------------------------------------------------- +--- Copyright (c) 2014 Microsoft Corporation. All rights reserved. +--- Released under Apache 2.0 license as described in the file LICENSE. +--- Author: Jeremy Avigad +---------------------------------------------------------------------------------------------------- + +import logic +import function + +using function + +namespace congruence + +-- TODO: delete this +axiom sorry {P : Prop} : P + +-- TODO: move this somewhere else +abbreviation reflexive {T : Type} (R : T → T → Type) : Prop := ∀x, R x x + +section + +parameters {T1 : Type} {T2 : Type} (R1 : T1 → T1 → Prop) (R2 : T2 → T2 → Prop) (f : T1 → T2) + +definition congruence : Prop := ∀x y : T1, R1 x y → R2 (f x) (f y) + +theorem congr_app {H1 : congruence} {x y : T1} (H2 : R1 x y) : R2 (f x) (f y) := H1 x y H2 + +end + +theorem congr_trivial [instance] {T : Type} (R : T → T → Prop) : congruence R R id := take x y H, H + +theorem congr_const {T2 : Type} (R2 : T2 → T2 → Prop) (H : reflexive R2) : + ∀(T1 : Type) (R1 : T1 → T1 → Prop) (c : T2), congruence R1 R2 (const T1 c) := +take T1 R1 c x y H1, H c + +theorem congr_const_iff [instance] (T1 : Type) (R1 : T1 → T1 → Prop) (c : Prop) : + congruence R1 iff (const T1 c) := congr_const iff iff_refl T1 R1 c + +theorem congr_and [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) + (H1 : congruence R iff f1) (H2 : congruence R iff f2) : + congruence R iff (λx, f1 x ∧ f2 x) := sorry + +theorem congr_or [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) + (H1 : congruence R iff f1) (H2 : congruence R iff f2) : + congruence R iff (λx, f1 x ∨ f2 x) := sorry + +theorem congr_implies [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) + (H1 : congruence R iff f1) (H2 : congruence R iff f2) : + congruence R iff (λx, f1 x → f2 x) := sorry + +theorem congr_iff [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) + (H1 : congruence R iff f1) (H2 : congruence R iff f2) : + congruence R iff (λx, f1 x ↔ f2 x) := sorry + +theorem congr_not [instance] (T : Type) (R : T → T → Prop) (f : T → Prop) + (H : congruence R iff f) : + congruence R iff (λx, ¬ f x) := sorry + +theorem test1 (a b c d e : Prop) (H1 : a ↔ b) : (a ∨ c → ¬(d → a)) ↔ (b ∨ c → ¬(d → b)) := + congr_app iff iff _ H1 + +theorem subst_iff {T : Type} {R : T → T → Prop} {P : T → Prop} {Hcongr : congruence R iff P} + {a b : T} (H : R a b) (H1 : P a) : P b := +iff_mp_left (@congr_app _ _ R iff P Hcongr _ _ H) H1 + +theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) := +subst_iff H1 H2