feat(frontends/lean/structure_cmd): allow structure declarations that contains only a header
This commit is contained in:
parent
91749d2364
commit
8f3139231b
2 changed files with 39 additions and 65 deletions
|
@ -447,6 +447,12 @@ struct structure_cmd_fn {
|
|||
elaborate_new_fields(new_fields);
|
||||
}
|
||||
|
||||
void process_empty_new_fields() {
|
||||
buffer<expr> new_fields;
|
||||
elaborate_new_fields(new_fields);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Traverse fields and collect the universes they reside in \c r_lvls.
|
||||
This information is used to compute the resultant universe level for the inductive datatype declaration.
|
||||
*/
|
||||
|
@ -684,13 +690,19 @@ struct structure_cmd_fn {
|
|||
|
||||
environment operator()() {
|
||||
process_header();
|
||||
m_p.check_token_next(get_assign_tk(), "invalid 'structure', ':=' expected");
|
||||
m_mk_pos = m_p.pos();
|
||||
m_mk = m_p.check_atomic_id_next("invalid 'structure', identifier expected");
|
||||
m_mk = m_name + m_mk;
|
||||
m_mk_infer = parse_implicit_infer_modifier(m_p);
|
||||
m_p.check_token_next(get_dcolon_tk(), "invalid 'structure', '::' expected");
|
||||
process_new_fields();
|
||||
if (m_p.curr_is_token(get_assign_tk())) {
|
||||
m_p.check_token_next(get_assign_tk(), "invalid 'structure', ':=' expected");
|
||||
m_mk_pos = m_p.pos();
|
||||
m_mk = m_p.check_atomic_id_next("invalid 'structure', identifier expected");
|
||||
m_mk = m_name + m_mk;
|
||||
m_mk_infer = parse_implicit_infer_modifier(m_p);
|
||||
m_p.check_token_next(get_dcolon_tk(), "invalid 'structure', '::' expected");
|
||||
process_new_fields();
|
||||
} else {
|
||||
m_mk_pos = m_name_pos;
|
||||
m_mk = m_name + "mk";
|
||||
process_empty_new_fields();
|
||||
}
|
||||
infer_resultant_universe();
|
||||
collect_ctx_locals(m_ctx_locals);
|
||||
add_ctx_locals(m_ctx_locals);
|
||||
|
|
|
@ -61,7 +61,7 @@ namespace comm_semigroup
|
|||
binary.left_comm mul_comm mul_assoc a b c
|
||||
end comm_semigroup
|
||||
|
||||
structure monoid [class] (A : Type) extends semigroup A, has_one A:=
|
||||
structure monoid [class] (A : Type) extends semigroup A, has_one A :=
|
||||
mk :: (right_id : ∀a, mul a one = a) (left_id : ∀a, mul one a = a)
|
||||
|
||||
section
|
||||
|
@ -73,70 +73,32 @@ section
|
|||
theorem mul_left_id : 1 * a = a := !monoid.left_id
|
||||
end
|
||||
|
||||
exit
|
||||
structure comm_monoid [class] (A : Type) extends monoid A, comm_semigroup A :=
|
||||
mk ::
|
||||
structure comm_monoid [class] (A : Type) extends monoid A, comm_semigroup A
|
||||
|
||||
exit
|
||||
structure Semigroup :=
|
||||
mk :: (carrier : Type) (struct : semigroup carrier)
|
||||
|
||||
namespace comm_monoid
|
||||
section
|
||||
variables {A : Type} [s : comm_monoid A]
|
||||
variables a b c : A
|
||||
definition mul := comm_monoid.rec (λmul one assoc right_id left_id comm, mul) s a b
|
||||
definition one := comm_monoid.rec (λmul one assoc right_id left_id comm, one) s
|
||||
definition assoc : mul (mul a b) c = mul a (mul b c) :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, assoc) s a b c
|
||||
definition right_id : mul a one = a :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, right_id) s a
|
||||
definition left_id : mul one a = a :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, left_id) s a
|
||||
definition comm : mul a b = mul b a :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, comm) s a b
|
||||
end
|
||||
end comm_monoid
|
||||
coercion Semigroup.carrier
|
||||
instance Semigroup.struct
|
||||
|
||||
section
|
||||
variables {A : Type} [s : comm_monoid A]
|
||||
include s
|
||||
definition comm_monoid_monoid [instance] : monoid A :=
|
||||
monoid.mk comm_monoid.mul comm_monoid.one comm_monoid.assoc
|
||||
comm_monoid.right_id comm_monoid.left_id
|
||||
definition comm_monoid_comm_semigroup [instance] : comm_semigroup A :=
|
||||
comm_semigroup.mk comm_monoid.mul comm_monoid.assoc comm_monoid.comm
|
||||
end
|
||||
structure CommSemigroup :=
|
||||
mk :: (carrier : Type) (struct : comm_semigroup carrier)
|
||||
|
||||
-- bundled structures
|
||||
-- ------------------
|
||||
coercion CommSemigroup.carrier
|
||||
instance CommSemigroup.struct
|
||||
|
||||
inductive Semigroup [class] : Type := mk : Π carrier : Type, semigroup carrier → Semigroup
|
||||
section
|
||||
variable S : Semigroup
|
||||
definition Semigroup.carrier [coercion] : Type := Semigroup.rec (λc s, c) S
|
||||
definition Semigroup.struc [instance] : semigroup S := Semigroup.rec (λc s, s) S
|
||||
end
|
||||
structure Monoid :=
|
||||
mk :: (carrier : Type) (struct : monoid carrier)
|
||||
|
||||
inductive CommSemigroup [class] : Type :=
|
||||
mk : Π carrier : Type, comm_semigroup carrier → CommSemigroup
|
||||
section
|
||||
variable S : CommSemigroup
|
||||
definition CommSemigroup.carrier [coercion] : Type := CommSemigroup.rec (λc s, c) S
|
||||
definition CommSemigroup.struc [instance] : comm_semigroup S := CommSemigroup.rec (λc s, s) S
|
||||
end
|
||||
coercion Monoid.carrier
|
||||
instance Monoid.struct
|
||||
|
||||
inductive Monoid [class] : Type := mk : Π carrier : Type, monoid carrier → Monoid
|
||||
section
|
||||
variable S : Monoid
|
||||
definition Monoid.carrier [coercion] : Type := Monoid.rec (λc s, c) S
|
||||
definition Monoid.struc [instance] : monoid S := Monoid.rec (λc s, s) S
|
||||
end
|
||||
structure CommMonoid :=
|
||||
mk :: (carrier : Type) (struct : comm_monoid carrier)
|
||||
|
||||
coercion CommMonoid.carrier
|
||||
instance CommMonoid.struct
|
||||
|
||||
inductive CommMonoid : Type := mk : Π carrier : Type, comm_monoid carrier → CommMonoid
|
||||
section
|
||||
variable S : CommMonoid
|
||||
definition CommMonoid.carrier [coercion] : Type := CommMonoid.rec (λc s, c) S
|
||||
definition CommMonoid.struc [instance] : comm_monoid S := CommMonoid.rec (λc s, s) S
|
||||
end
|
||||
end algebra
|
||||
|
||||
open algebra
|
||||
|
@ -156,7 +118,7 @@ calc
|
|||
... = a * b * (c * d) : !mul_assoc
|
||||
|
||||
-- for test4b to work, we need instances at the level of the bundled structures as well
|
||||
definition Monoid_Semigroup [instance] (M : Monoid) : Semigroup :=
|
||||
definition Monoid_Semigroup [coercion] (M : Monoid) : Semigroup :=
|
||||
Semigroup.mk (Monoid.carrier M) _
|
||||
|
||||
theorem test4 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) :=
|
||||
|
|
Loading…
Reference in a new issue