fix(frontends/lean/structure_cmd): modify coercion generation
The previous coercion was more efficient, but the computation was getting stuck when processing algebraic structures
This commit is contained in:
parent
d2b5af237e
commit
91749d2364
2 changed files with 191 additions and 10 deletions
|
@ -628,16 +628,13 @@ struct structure_cmd_fn {
|
|||
bi = mk_inst_implicit_binder_info();
|
||||
expr st = mk_local(m_ngen.next(), "s", st_type, bi);
|
||||
expr coercion_type = infer_implicit(Pi(m_params, Pi(st, parent)), m_params.size(), true);;
|
||||
levels rec_ls = levels(parent_rlvl, st_ls);
|
||||
expr rec = mk_app(mk_constant(inductive::get_elim_name(m_name), rec_ls), m_params);
|
||||
expr type_former = Fun(st, parent);
|
||||
rec = mk_app(rec, type_former);
|
||||
expr minor_premise = parent_intro;
|
||||
for (unsigned idx : fmap)
|
||||
minor_premise = mk_app(minor_premise, m_fields[idx]);
|
||||
minor_premise = Fun(m_fields, minor_premise);
|
||||
rec = mk_app(rec, minor_premise, st);
|
||||
expr coercion_value = Fun(m_params, Fun(st, rec));
|
||||
expr coercion_value = parent_intro;
|
||||
for (unsigned idx : fmap) {
|
||||
expr const & field = m_fields[idx];
|
||||
expr proj = mk_app(mk_app(mk_constant(m_name + mlocal_name(field), st_ls), m_params), st);
|
||||
coercion_value = mk_app(coercion_value, proj);
|
||||
}
|
||||
coercion_value = Fun(m_params, Fun(st, coercion_value));
|
||||
name coercion_name = m_name + parent_name.append_before("to_");
|
||||
|
||||
bool opaque = false;
|
||||
|
|
184
tests/lean/run/group4.lean
Normal file
184
tests/lean/run/group4.lean
Normal file
|
@ -0,0 +1,184 @@
|
|||
-- Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Jeremy Avigad, Leonardo de Moura
|
||||
|
||||
-- algebra.group
|
||||
-- =============
|
||||
|
||||
-- Various structures with 1, *, inv, including groups.
|
||||
|
||||
import logic.eq logic.connectives
|
||||
import data.unit data.sigma data.prod
|
||||
import algebra.function algebra.binary
|
||||
|
||||
open eq
|
||||
|
||||
namespace algebra
|
||||
|
||||
structure has_mul [class] (A : Type) :=
|
||||
mk :: (mul : A → A → A)
|
||||
|
||||
structure has_one [class] (A : Type) :=
|
||||
mk :: (one : A)
|
||||
|
||||
structure has_inv [class] (A : Type) :=
|
||||
mk :: (inv : A → A)
|
||||
|
||||
infixl `*` := has_mul.mul
|
||||
postfix `⁻¹` := has_inv.inv
|
||||
notation 1 := has_one.one
|
||||
|
||||
structure semigroup [class] (A : Type) extends has_mul A :=
|
||||
mk :: (assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c))
|
||||
|
||||
set_option pp.notation false
|
||||
-- set_option pp.implicit true
|
||||
-- set_option pp.coercions true
|
||||
print instances has_mul
|
||||
|
||||
section
|
||||
variables {A : Type} [s : semigroup A]
|
||||
include s
|
||||
variables a b : A
|
||||
|
||||
example : a * b = semigroup.mul a b :=
|
||||
rfl
|
||||
|
||||
theorem mul_assoc (a b c : A) : a * b * c = a * (b * c) :=
|
||||
semigroup.assoc a b c
|
||||
end
|
||||
|
||||
structure comm_semigroup [class] (A : Type) extends semigroup A :=
|
||||
mk :: (comm : ∀a b, mul a b = mul b a)
|
||||
|
||||
namespace comm_semigroup
|
||||
variables {A : Type} [s : comm_semigroup A]
|
||||
include s
|
||||
variables a b c : A
|
||||
theorem mul_comm : a * b = b * a := !comm_semigroup.comm
|
||||
|
||||
theorem mul_left_comm : a * (b * c) = b * (a * c) :=
|
||||
binary.left_comm mul_comm mul_assoc a b c
|
||||
end comm_semigroup
|
||||
|
||||
structure monoid [class] (A : Type) extends semigroup A, has_one A:=
|
||||
mk :: (right_id : ∀a, mul a one = a) (left_id : ∀a, mul one a = a)
|
||||
|
||||
section
|
||||
variables {A : Type} [s : monoid A]
|
||||
variable a : A
|
||||
include s
|
||||
|
||||
theorem mul_right_id : a * 1 = a := !monoid.right_id
|
||||
theorem mul_left_id : 1 * a = a := !monoid.left_id
|
||||
end
|
||||
|
||||
exit
|
||||
structure comm_monoid [class] (A : Type) extends monoid A, comm_semigroup A :=
|
||||
mk ::
|
||||
|
||||
exit
|
||||
|
||||
namespace comm_monoid
|
||||
section
|
||||
variables {A : Type} [s : comm_monoid A]
|
||||
variables a b c : A
|
||||
definition mul := comm_monoid.rec (λmul one assoc right_id left_id comm, mul) s a b
|
||||
definition one := comm_monoid.rec (λmul one assoc right_id left_id comm, one) s
|
||||
definition assoc : mul (mul a b) c = mul a (mul b c) :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, assoc) s a b c
|
||||
definition right_id : mul a one = a :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, right_id) s a
|
||||
definition left_id : mul one a = a :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, left_id) s a
|
||||
definition comm : mul a b = mul b a :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, comm) s a b
|
||||
end
|
||||
end comm_monoid
|
||||
|
||||
section
|
||||
variables {A : Type} [s : comm_monoid A]
|
||||
include s
|
||||
definition comm_monoid_monoid [instance] : monoid A :=
|
||||
monoid.mk comm_monoid.mul comm_monoid.one comm_monoid.assoc
|
||||
comm_monoid.right_id comm_monoid.left_id
|
||||
definition comm_monoid_comm_semigroup [instance] : comm_semigroup A :=
|
||||
comm_semigroup.mk comm_monoid.mul comm_monoid.assoc comm_monoid.comm
|
||||
end
|
||||
|
||||
-- bundled structures
|
||||
-- ------------------
|
||||
|
||||
inductive Semigroup [class] : Type := mk : Π carrier : Type, semigroup carrier → Semigroup
|
||||
section
|
||||
variable S : Semigroup
|
||||
definition Semigroup.carrier [coercion] : Type := Semigroup.rec (λc s, c) S
|
||||
definition Semigroup.struc [instance] : semigroup S := Semigroup.rec (λc s, s) S
|
||||
end
|
||||
|
||||
inductive CommSemigroup [class] : Type :=
|
||||
mk : Π carrier : Type, comm_semigroup carrier → CommSemigroup
|
||||
section
|
||||
variable S : CommSemigroup
|
||||
definition CommSemigroup.carrier [coercion] : Type := CommSemigroup.rec (λc s, c) S
|
||||
definition CommSemigroup.struc [instance] : comm_semigroup S := CommSemigroup.rec (λc s, s) S
|
||||
end
|
||||
|
||||
inductive Monoid [class] : Type := mk : Π carrier : Type, monoid carrier → Monoid
|
||||
section
|
||||
variable S : Monoid
|
||||
definition Monoid.carrier [coercion] : Type := Monoid.rec (λc s, c) S
|
||||
definition Monoid.struc [instance] : monoid S := Monoid.rec (λc s, s) S
|
||||
end
|
||||
|
||||
inductive CommMonoid : Type := mk : Π carrier : Type, comm_monoid carrier → CommMonoid
|
||||
section
|
||||
variable S : CommMonoid
|
||||
definition CommMonoid.carrier [coercion] : Type := CommMonoid.rec (λc s, c) S
|
||||
definition CommMonoid.struc [instance] : comm_monoid S := CommMonoid.rec (λc s, s) S
|
||||
end
|
||||
end algebra
|
||||
|
||||
open algebra
|
||||
|
||||
section examples
|
||||
|
||||
theorem test1 {S : Semigroup} (a b c d : S) : a * (b * c) * d = a * b * (c * d) :=
|
||||
calc
|
||||
a * (b * c) * d = a * b * c * d : {symm !mul_assoc}
|
||||
... = a * b * (c * d) : !mul_assoc
|
||||
|
||||
theorem test2 {M : CommSemigroup} (a b : M) : a * b = a * b := rfl
|
||||
|
||||
theorem test3 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) :=
|
||||
calc
|
||||
a * (b * c) * d = a * b * c * d : {symm !mul_assoc}
|
||||
... = a * b * (c * d) : !mul_assoc
|
||||
|
||||
-- for test4b to work, we need instances at the level of the bundled structures as well
|
||||
definition Monoid_Semigroup [instance] (M : Monoid) : Semigroup :=
|
||||
Semigroup.mk (Monoid.carrier M) _
|
||||
|
||||
theorem test4 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) :=
|
||||
test1 a b c d
|
||||
|
||||
theorem test5 {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) :=
|
||||
calc
|
||||
a * 1 * b * c = a * b * c : {!mul_right_id}
|
||||
... = a * (b * c) : !mul_assoc
|
||||
|
||||
theorem test5a {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) :=
|
||||
calc
|
||||
a * 1 * b * c = a * b * c : {!mul_right_id}
|
||||
... = a * (b * c) : !mul_assoc
|
||||
|
||||
theorem test5b {A : Type} {M : monoid A} (a b c : A) : a * 1 * b * c = a * (b * c) :=
|
||||
calc
|
||||
a * 1 * b * c = a * b * c : {!mul_right_id}
|
||||
... = a * (b * c) : !mul_assoc
|
||||
|
||||
theorem test6 {M : CommMonoid} (a b c : M) : a * 1 * b * c = a * (b * c) :=
|
||||
calc
|
||||
a * 1 * b * c = a * b * c : {!mul_right_id}
|
||||
... = a * (b * c) : !mul_assoc
|
||||
end examples
|
Loading…
Reference in a new issue