diff --git a/tests/lean/run/algebra1.lean b/tests/lean/run/algebra1.lean index dec2c3244..457abe94a 100644 --- a/tests/lean/run/algebra1.lean +++ b/tests/lean/run/algebra1.lean @@ -1,5 +1,6 @@ import logic +namespace experiment definition Type1 := Type.{1} context @@ -49,7 +50,7 @@ namespace nat := algebra.add_struct.mk add definition to_nat (n : num) : nat - := #algebra + := #experiment.algebra num.rec nat.zero (λ n, pos_num.rec (succ zero) (λ n r, r + r) (λ n r, r + r + succ zero) n) n end nat @@ -111,3 +112,4 @@ section check a*b*c*a*b*c*a*b*a*b*c*a check a*b end +end experiment diff --git a/tests/lean/run/class4.lean b/tests/lean/run/class4.lean index 0d03db227..d2b918736 100644 --- a/tests/lean/run/class4.lean +++ b/tests/lean/run/class4.lean @@ -1,5 +1,5 @@ import logic - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -90,3 +90,4 @@ reducible [off] add check dvd a (a + (succ b)) end nat +end experiment diff --git a/tests/lean/run/class5.lean b/tests/lean/run/class5.lean index f38cea46a..23a89b7f6 100644 --- a/tests/lean/run/class5.lean +++ b/tests/lean/run/class5.lean @@ -1,5 +1,5 @@ import logic - +namespace experiment namespace algebra inductive mul_struct [class] (A : Type) : Type := mk : (A → A → A) → mul_struct A @@ -33,7 +33,7 @@ end section open [notation] algebra open nat - -- check mul_struct nat << This is an error, we are open only the notation from algebra + -- check mul_struct nat << This is an error, we opened only the notation from algebra variables a b c : nat check a * b * c definition tst2 : nat := a * b * c @@ -41,10 +41,10 @@ end section open nat - -- check mul_struct nat << This is an error, we are open only the notation from algebra + -- check mul_struct nat << This is an error, we opened only the notation from algebra variables a b c : nat - check #algebra a*b*c - definition tst3 : nat := #algebra a*b*c + check a*b*c + definition tst3 : nat := #nat a*b*c end section @@ -54,6 +54,7 @@ section := algebra.mul_struct.mk add variables a b c : nat - check #algebra a*b*c -- << is open add instead of mul - definition tst4 : nat := #algebra a*b*c + check #experiment.algebra a*b*c -- << is open add instead of mul + definition tst4 : nat := #experiment.algebra a*b*c end +end experiment diff --git a/tests/lean/run/coe7.lean b/tests/lean/run/coe7.lean index 7e04f300b..fda2f4f3b 100644 --- a/tests/lean/run/coe7.lean +++ b/tests/lean/run/coe7.lean @@ -1,5 +1,5 @@ import logic - +namespace experiment constant nat : Type.{1} constant int : Type.{1} constant of_nat : nat → int @@ -9,3 +9,4 @@ theorem tst (n : nat) : n = n := have H : true, from trivial, calc n = n : eq.refl _ ... = n : eq.refl _ +end experiment diff --git a/tests/lean/run/coe8.lean b/tests/lean/run/coe8.lean index 510491854..d58eb7db8 100644 --- a/tests/lean/run/coe8.lean +++ b/tests/lean/run/coe8.lean @@ -1,5 +1,5 @@ import logic - +namespace experiment constant nat : Type.{1} constant int : Type.{1} constant of_nat : nat → int diff --git a/tests/lean/run/nat_bug.lean b/tests/lean/run/nat_bug.lean index 15a66dfcb..4fc773f97 100644 --- a/tests/lean/run/nat_bug.lean +++ b/tests/lean/run/nat_bug.lean @@ -1,7 +1,7 @@ import logic open decidable open eq - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -24,3 +24,4 @@ theorem zero_or_succ2 (n : nat) : n = zero ∨ n = succ (pred n) (take m IH, or.intro_right _ (show succ m = succ (pred (succ m)), from congr_arg succ (symm (pred_succ m)))) end nat +end experiment diff --git a/tests/lean/run/nat_bug2.lean b/tests/lean/run/nat_bug2.lean index 864ecf419..ee29522d7 100644 --- a/tests/lean/run/nat_bug2.lean +++ b/tests/lean/run/nat_bug2.lean @@ -1,6 +1,6 @@ import logic open eq.ops - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -23,3 +23,4 @@ theorem succ_le {n m : nat} (H : n ≤ m) : succ n ≤ succ m := add_one m ▸ add_one n ▸ add_le_right H 1 end nat +end experiment diff --git a/tests/lean/run/nat_bug3.lean b/tests/lean/run/nat_bug3.lean index 98a05aeef..83b5b1540 100644 --- a/tests/lean/run/nat_bug3.lean +++ b/tests/lean/run/nat_bug3.lean @@ -1,6 +1,6 @@ import logic open eq.ops - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -23,3 +23,4 @@ theorem succ_le_cancel {n m : nat} (H : succ n ≤ succ m) : n ≤ m := add_le_right_inv (add_one m⁻¹ ▸ add_one n⁻¹ ▸ H) end nat +end experiment diff --git a/tests/lean/run/nat_bug4.lean b/tests/lean/run/nat_bug4.lean index a197e11f7..5aca421c3 100644 --- a/tests/lean/run/nat_bug4.lean +++ b/tests/lean/run/nat_bug4.lean @@ -1,6 +1,6 @@ import logic open eq.ops - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -15,3 +15,4 @@ open eq theorem small2 (n m l : nat) : n * succ l + m = n * l + n + m := subst (mul_succ_right _ _) (eq.refl (n * succ l + m)) end nat +end experiment diff --git a/tests/lean/run/nat_bug5.lean b/tests/lean/run/nat_bug5.lean index 9d22b020a..597e16759 100644 --- a/tests/lean/run/nat_bug5.lean +++ b/tests/lean/run/nat_bug5.lean @@ -1,6 +1,6 @@ import logic open eq.ops eq - +namespace foo inductive nat : Type := zero : nat, succ : nat → nat @@ -33,3 +33,4 @@ theorem mul_add_distr_left (n m k : nat) : (n + m) * k = n * k + m * k ... = n * succ l + (m * l + m) : {symm (mul_succ_right _ _)} ... = n * succ l + m * succ l : {symm (mul_succ_right _ _)}) end nat +end foo diff --git a/tests/lean/run/nat_bug6.lean b/tests/lean/run/nat_bug6.lean index 7279386a0..261dffd87 100644 --- a/tests/lean/run/nat_bug6.lean +++ b/tests/lean/run/nat_bug6.lean @@ -1,6 +1,6 @@ import logic open eq.ops - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -19,3 +19,4 @@ print "===========================" theorem tst (n : nat) (H : P (n * zero)) : P zero := eq.subst (mul_zero_right _) H end nat +exit diff --git a/tests/lean/run/nat_bug7.lean b/tests/lean/run/nat_bug7.lean index fb9a9ae0d..b59f7297a 100644 --- a/tests/lean/run/nat_bug7.lean +++ b/tests/lean/run/nat_bug7.lean @@ -1,5 +1,5 @@ import logic - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -14,3 +14,4 @@ print "===========================" theorem bug (a b c d : nat) : a + b + c + d = a + c + b + d := subst (add_right_comm _ _ _) (eq.refl (a + b + c + d)) end nat +end experiment diff --git a/tests/lean/run/nat_coe.lean b/tests/lean/run/nat_coe.lean index bdd89cf52..2696d2161 100644 --- a/tests/lean/run/nat_coe.lean +++ b/tests/lean/run/nat_coe.lean @@ -1,5 +1,5 @@ import logic - +namespace experiment constant nat : Type.{1} constant int : Type.{1} @@ -24,3 +24,4 @@ definition c2 := i + j theorem T2 : c2 = int_add i j := eq.refl _ +exit diff --git a/tests/lean/run/over_subst.lean b/tests/lean/run/over_subst.lean index 79365cfb0..b211b8abf 100644 --- a/tests/lean/run/over_subst.lean +++ b/tests/lean/run/over_subst.lean @@ -1,5 +1,5 @@ import logic - +namespace experiment namespace nat constant nat : Type.{1} constant add : nat → nat → nat @@ -29,3 +29,4 @@ open nat open eq theorem add_lt_left {a b : int} (H : a < b) (c : int) : c + a < c + b := subst (symm (add_assoc c a one)) (add_le_left H c) +end experiment diff --git a/tests/lean/run/tactic23.lean b/tests/lean/run/tactic23.lean index 656f48ed9..2c5e0b526 100644 --- a/tests/lean/run/tactic23.lean +++ b/tests/lean/run/tactic23.lean @@ -1,5 +1,5 @@ import logic - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -35,3 +35,4 @@ theorem T2 : ∃ a, (is_zero a) = true := by apply exists_intro; apply eq.refl end nat +end experiment diff --git a/tests/lean/run/uni.lean b/tests/lean/run/uni.lean index a02a76f29..1011cf462 100644 --- a/tests/lean/run/uni.lean +++ b/tests/lean/run/uni.lean @@ -1,5 +1,5 @@ import logic - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -46,3 +46,4 @@ end test_unify(env, t(m), tt, 1) test_unify(env, t(m), ff, 1) *) +end experiment diff --git a/tests/lean/run/uni2.lean b/tests/lean/run/uni2.lean index acb773229..625e03a50 100644 --- a/tests/lean/run/uni2.lean +++ b/tests/lean/run/uni2.lean @@ -1,5 +1,5 @@ import logic - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -48,3 +48,4 @@ end test_unify(env, f(t(m)), f(tt), 1) *) +exit diff --git a/tests/lean/run/uni_issue1.lean b/tests/lean/run/uni_issue1.lean index adb8ac83c..8aceff03d 100644 --- a/tests/lean/run/uni_issue1.lean +++ b/tests/lean/run/uni_issue1.lean @@ -1,8 +1,9 @@ import logic - +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat definition is_zero (n : nat) := nat.rec true (λ n r, false) n +end experiment diff --git a/tests/lean/slow/nat_bug1.lean b/tests/lean/slow/nat_bug1.lean index a15172d50..2527de427 100644 --- a/tests/lean/slow/nat_bug1.lean +++ b/tests/lean/slow/nat_bug1.lean @@ -6,6 +6,7 @@ import logic open tactic +namespace foo inductive nat : Type := zero : nat, succ : nat → nat @@ -23,3 +24,4 @@ print "==================" theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat.rec x f 0 = x := eq.refl _ end nat +end foo diff --git a/tests/lean/slow/nat_bug2.lean b/tests/lean/slow/nat_bug2.lean index ec841c33a..496ce74c7 100644 --- a/tests/lean/slow/nat_bug2.lean +++ b/tests/lean/slow/nat_bug2.lean @@ -6,7 +6,7 @@ import logic algebra.binary open tactic binary eq.ops eq open decidable - +namespace experiment definition refl := @eq.refl definition and_intro := @and.intro definition or_intro_left := @or.intro_left @@ -1410,3 +1410,4 @@ theorem dist_eq_intro {n m k l : ℕ} (H : n + m = k + l) : dist n k = dist l m ... = dist l m : dist_add_left k l m end nat +end experiment diff --git a/tests/lean/slow/nat_wo_hints.lean b/tests/lean/slow/nat_wo_hints.lean index e4950d608..98501af2e 100644 --- a/tests/lean/slow/nat_wo_hints.lean +++ b/tests/lean/slow/nat_wo_hints.lean @@ -7,6 +7,7 @@ import logic algebra.binary open tactic binary eq.ops eq open decidable +namespace experiment inductive nat : Type := zero : nat, succ : nat → nat @@ -1415,3 +1416,4 @@ theorem dist_eq_intro {n m k l : ℕ} (H : n + m = k + l) : dist n k = dist l m end nat +end experiment