From 92b0a538c59ac332ddc23c1907c9653b2021d162 Mon Sep 17 00:00:00 2001 From: Leonardo de Moura Date: Fri, 7 Nov 2014 10:18:24 -0800 Subject: [PATCH] refactor(library/logic/wf): add well_founded class, and cleanup file --- library/logic/wf.lean | 61 +++++++++++++++++++++++-------------------- 1 file changed, 33 insertions(+), 28 deletions(-) diff --git a/library/logic/wf.lean b/library/logic/wf.lean index 4063bdb42..53e5641de 100644 --- a/library/logic/wf.lean +++ b/library/logic/wf.lean @@ -6,27 +6,31 @@ import logic.eq inductive acc {A : Type} (R : A → A → Prop) : A → Prop := intro : ∀x, (∀ y, R y x → acc R y) → acc R x -definition well_founded {A : Type} (R : A → A → Prop) := -∀a, acc R a +namespace acc + variables {A : Type} {R : A → A → Prop} + + definition inv {x y : A} (H₁ : acc R x) (H₂ : R y x) : acc R y := + acc.rec_on H₁ (λ x₁ ac₁ iH H₂, ac₁ y H₂) H₂ +end acc + +inductive well_founded [class] {A : Type} (R : A → A → Prop) : Prop := +intro : (∀ a, acc R a) → well_founded R namespace well_founded + definition apply [coercion] {A : Type} {R : A → A → Prop} (wf : well_founded R) : ∀a, acc R a := + take a, well_founded.rec_on wf (λp, p) a -context + context parameters {A : Type} {R : A → A → Prop} infix `≺`:50 := R - definition acc_inv {x y : A} (H₁ : acc R x) (H₂ : y ≺ x) : acc R y := - have gen : y ≺ x → acc R y, from - acc.rec_on H₁ (λ x₁ ac₁ iH H₂, ac₁ y H₂), - gen H₂ + hypothesis [Hwf : well_founded R] - hypothesis Hwf : well_founded R - - theorem well_founded_rec {C : A → Type} (a : A) (H : Πx, (Πy, y ≺ x → C y) → C x) : C a := + theorem recursion {C : A → Type} (a : A) (H : Πx, (Πy, y ≺ x → C y) → C x) : C a := acc.rec_on (Hwf a) (λ x₁ ac₁ iH, H x₁ iH) - theorem well_founded_ind {C : A → Prop} (a : A) (H : ∀x, (∀y, y ≺ x → C y) → C x) : C a := - well_founded_rec a H + theorem indunction {C : A → Prop} (a : A) (H : ∀x, (∀y, y ≺ x → C y) → C x) : C a := + recursion a H variable {C : A → Type} variable F : Πx, (Πy, y ≺ x → C y) → C x @@ -35,29 +39,30 @@ context acc.rec_on a (λ x₁ ac₁ iH, F x₁ iH) theorem fix_F_eq (x : A) (r : acc R x) : - fix_F F x r = F x (λ (y : A) (p : y ≺ x), fix_F F y (acc_inv r p)) := - have gen : Π r : acc R x, fix_F F x r = F x (λ (y : A) (p : y ≺ x), fix_F F y (acc_inv r p)), from + fix_F F x r = F x (λ (y : A) (p : y ≺ x), fix_F F y (acc.inv r p)) := + have gen : Π r : acc R x, fix_F F x r = F x (λ (y : A) (p : y ≺ x), fix_F F y (acc.inv r p)), from acc.rec_on r (λ x₁ ac iH (r₁ : acc R x₁), -- The proof is straightforward after we replace r₁ with acc.intro (to "unblock" evaluation). calc fix_F F x₁ r₁ = fix_F F x₁ (acc.intro x₁ ac) : proof_irrel r₁ - ... = F x₁ (λ y ay, fix_F F y (acc_inv r₁ ay)) : rfl), + ... = F x₁ (λ y ay, fix_F F y (acc.inv r₁ ay)) : rfl), gen r -end + end -variables {A : Type} {C : A → Type} {R : A → A → Prop} --- Well-founded fixpoint -definition fix (Hwf : well_founded R) (F : Πx, (Πy, R y x → C y) → C x) (x : A) : C x := -fix_F F x (Hwf x) + variables {A : Type} {C : A → Type} {R : A → A → Prop} --- Well-founded fixpoint satisfies fixpoint equation -theorem fix_eq (Hwf : well_founded R) (F : Πx, (Πy, R y x → C y) → C x) (x : A) : - fix Hwf F x = F x (λy h, fix Hwf F y) := -calc - -- The proof is straightforward, it just uses fix_F_eq and proof irrelevance - fix Hwf F x - = F x (λy h, fix_F F y (acc_inv (Hwf x) h)) : fix_F_eq F x (Hwf x) - ... = F x (λy h, fix Hwf F y) : rfl -- proof irrelevance is used here + -- Well-founded fixpoint + definition fix [Hwf : well_founded R] (F : Πx, (Πy, R y x → C y) → C x) (x : A) : C x := + fix_F F x (Hwf x) + + -- Well-founded fixpoint satisfies fixpoint equation + theorem fix_eq [Hwf : well_founded R] (F : Πx, (Πy, R y x → C y) → C x) (x : A) : + fix F x = F x (λy h, fix F y) := + calc + -- The proof is straightforward, it just uses fix_F_eq and proof irrelevance + fix F x + = F x (λy h, fix_F F y (acc.inv (Hwf x) h)) : fix_F_eq F x (Hwf x) + ... = F x (λy h, fix F y) : rfl -- proof irrelevance is used here end well_founded